Celebrating 50 years of microbial granulation technologies: From canonical wastewater management to bio-product recovery.

Sci Total Environ

Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh 201002, India; Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India. Electronic address:

Published: May 2023

Microbial granulation technologies (MGT) in wastewater management are widely practised for more than fifty years. MGT can be considered a fine example of human innovativeness-driven nature wherein the manmade forces applied during operational controls in the biological process of wastewater treatment drive the microbial communities to modify their biofilms into granules. Mankind, over the past half a century, has been refining the knowledge of triggering biofilm into granules with some definite success. This review captures the journey of MGT from inception to maturation providing meaningful insights into the process development of MGT-based wastewater management. The full-scale application of MGT-based wastewater management is discussed with an understanding of functional microbial interactions within the granule. The molecular mechanism of granulation through the secretion of extracellular polymeric substances (EPS) and signal molecules is also highlighted in detail. The recent research interest in the recovery of useful bioproducts from the granular EPS is also emphasized.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.162213DOI Listing

Publication Analysis

Top Keywords

wastewater management
16
microbial granulation
8
granulation technologies
8
mgt-based wastewater
8
wastewater
5
celebrating years
4
microbial
4
years microbial
4
technologies canonical
4
canonical wastewater
4

Similar Publications

Sustainable management of textile industrial wastewater is one of the severe challenges in the current regime. It has been reported that each year huge amount of textile industry discharge especially the dye released into the environment without pre-treatment that adversely affect the human health and plant productivity. In the present study, different bacterial isolates had been isolated from the industrial effluents and investigated for their bioremediation potential against the malachite green (MG) dye, a major pollutant of textile industries.

View Article and Find Full Text PDF

The role of membrane technology in palm oil mill effluent (POME) decontamination: Current trends and future prospects.

J Environ Manage

January 2025

Chemical Engineering Department, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia; Research Center for Biosciences and Biotechnology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia.

This article reviews the role of membrane systems in treating palm oil mill effluent (POME), a waste generated by the palm industry. The review focuses on various membrane systems such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO), highlighting their effectiveness in removing pollutants and recovering water. Special attention is given to hybrid systems integrating membrane bioreactors (MBRs) and other advanced processes to enhance fouling control, improve water quality, and promote sustainability.

View Article and Find Full Text PDF

Herein, a citrus processing wastewater-based biorefinery has been developed manufacturing essential oils, polyphenols and bacterial cellulose. Liquid-liquid extraction was evaluated for isolation of essential oils assessing different organic solvents, recovering 0.45 kg of essential oils per m of wastewater using n-heptane.

View Article and Find Full Text PDF

Assessment of Garbage Enzyme as a Bioremediation Method for the Wastewater Treatment.

Biotechnol Appl Biochem

January 2025

Department of Civil Engineering, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India.

This study evaluates the efficacy of garbage enzyme (GE) in bioremediation to reduce pollutants in sewage drains that discharge into the natural streams and rivers. Garbage enzyme is prepared with help of brown sugar, fruit, vegetable wastes, and water in the proportion 1:3:10 (by weight), which is then applied to the samples collected from various drainage sites in Jaunpur district, Uttar Pradesh, India. Different concentrations of GE (ranging from 0% to 20%) are mixed with sewage to assess pollution reduction.

View Article and Find Full Text PDF

Biotinylation-based lateral flow assays for pathogenic and total bacteria detection.

Anal Chim Acta

February 2025

Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, PR China. Electronic address:

Background: It is highly desirable to concurrently evaluate both pathogenic and total bacteria in water and food environments. As a point-of-care platform for biochemical tests, lateral flow assay (LFA) has been widely used for pathogenic bacteria due to its portability and fast time of outcome. However, traditional LFA was unable to detect total bacteria due to the lack of a universal antibody that could bind all the bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!