Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, versatile boron-doped graphitic carbon nitride (gCN) incorporated mesoporous SBA-15 (BGS) composite materials were prepared by thermal polycondensation method using boric acid & melamine as a B-gCN source material and SBA-15 as mesoporous support. The prepared BGS composites are utilized sustainably using solar light as the energy source for the continuous flow of photodegradation of tetracycline (TC) antibiotics. This work highlights that the photocatalysts preparation was carried out with an eco-friendly strategy, solvent-free and without additional reagents. To alter the amount of boron quantity (0.124 g, 0.248 g, and 0.49 g) have to prepare three different composites using a similar procedure, the obtained composites viz., BGS-1, BGS-2 and BGS-3, respectively. The physicochemical property of the prepared composites was investigated by X-ray diffractometry, Fourier-transform infrared spectroscopy, Raman, Diffraction reflectance spectra, Photoluminescence, Brunauer-Emmett-Teller and transmission electron microscopy (TEM). The results shows that 0.24 g boron- loaded BGS composites degrade TC up to 93.74%, which is much higher than the rest of the catalyst. The addition of mesoporous SBA-15 incresed the specific surface area of the g-CN, and heteroatom of boron increased the interplanar stracking distance of g-CN, enlarged the optical absorption range, reducing the energy bandgap and enhanced the photocatalytic activity of TC. Additionally, the stability and recycling efficiency of the representative photocatalysts viz., BGS-2 was observed to be good even at the fifth cycle. The photocatalytic process using the BGS composites demonstrated to be capable candidate for the removal of tetracycline biowaste from aquesous media.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2023.115496 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!