A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In-situ development of boron doped g-CN supported SBA-15 nanocomposites for photocatalytic degradation of tetracycline. | LitMetric

In this study, versatile boron-doped graphitic carbon nitride (gCN) incorporated mesoporous SBA-15 (BGS) composite materials were prepared by thermal polycondensation method using boric acid & melamine as a B-gCN source material and SBA-15 as mesoporous support. The prepared BGS composites are utilized sustainably using solar light as the energy source for the continuous flow of photodegradation of tetracycline (TC) antibiotics. This work highlights that the photocatalysts preparation was carried out with an eco-friendly strategy, solvent-free and without additional reagents. To alter the amount of boron quantity (0.124 g, 0.248 g, and 0.49 g) have to prepare three different composites using a similar procedure, the obtained composites viz., BGS-1, BGS-2 and BGS-3, respectively. The physicochemical property of the prepared composites was investigated by X-ray diffractometry, Fourier-transform infrared spectroscopy, Raman, Diffraction reflectance spectra, Photoluminescence, Brunauer-Emmett-Teller and transmission electron microscopy (TEM). The results shows that 0.24 g boron- loaded BGS composites degrade TC up to 93.74%, which is much higher than the rest of the catalyst. The addition of mesoporous SBA-15 incresed the specific surface area of the g-CN, and heteroatom of boron increased the interplanar stracking distance of g-CN, enlarged the optical absorption range, reducing the energy bandgap and enhanced the photocatalytic activity of TC. Additionally, the stability and recycling efficiency of the representative photocatalysts viz., BGS-2 was observed to be good even at the fifth cycle. The photocatalytic process using the BGS composites demonstrated to be capable candidate for the removal of tetracycline biowaste from aquesous media.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2023.115496DOI Listing

Publication Analysis

Top Keywords

bgs composites
12
mesoporous sba-15
8
composites
6
in-situ development
4
development boron
4
boron doped
4
doped g-cn
4
g-cn supported
4
sba-15
4
supported sba-15
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!