Co-pyrolysis with pine sawdust reduces the environmental risks of copper and zinc in dredged sediment and improves its adsorption capacity for cadmium.

J Environ Manage

Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.

Published: May 2023

AI Article Synopsis

  • The treatment of heavy metal-contaminated dredged sediment (DS) using co-pyrolysis technology shows potential for reducing pollution and stabilizing hazardous metals like Cu and Zn.
  • Co-pyrolysis with pine sawdust effectively decreased the leaching toxicity of Cu and Zn, reducing their concentrations in the products, although total concentrations in the original sediment remained largely unchanged.
  • Conditions such as co-pyrolysis temperature and the biomass-to-sediment ratio significantly influenced the stabilization of Cu and Zn, with optimal temperatures demonstrating effective conversion of these metals into less harmful compounds.

Article Abstract

Proper treatment of heavy metal-contaminated dredged sediment (DS) is crucial to avoid secondary pollution. Effective and sustainable technologies are desired for the treatment of Zn- and Cu-contaminated DS. Due to the advantages of low energy consumption and time saving, co-pyrolysis technology was innovatively applied to treat Cu- and Zn-polluted DS in this study, and the effects of the co-pyrolysis conditions on Cu and Zn stabilization efficiencies, potential stabilization mechanisms, and the possibility for resource utilization of co-pyrolysis product were also investigated. The results showed that pine sawdust is an appropriate co-pyrolysis biomass for the stabilization of Cu and Zn based on the leaching toxicity analysis. The ecological risks of Cu and Zn in DS were reduced after co-pyrolysis treatment. The total concentrations of Zn and Cu in co-pyrolysis products were decreased by 5.87%-53.45% and 8.61%-57.45% of that in DS before co-pyrolysis. However, the total concentrations of Zn and Cu in DS remained basically unchanged after co-pyrolysis, which indicating the decreases in total concentrations of Zn and Cu in co-pyrolysis products were mainly related to dilution effect. Fraction analysis indicated that co-pyrolysis treatment contributed to transforming weakly bound Cu and Zn into stable fractions. The co-pyrolysis temperature and mass ratio of pine sawdust/DS had a greater influence than co-pyrolysis time on the fraction transformation of Cu and Zn. The leaching toxicity of Zn and Cu from the co-pyrolysis products was eliminated when the co-pyrolysis temperature reached 600 and 800 °C, respectively. Analysis of the X-ray photoelectron spectroscopy and X-ray diffraction results demonstrated that co-pyrolysis treatment could transform mobile Cu and Zn in DS into metal oxides, metal sulfides, phosphate compounds, etc. Batch adsorption procedures suggested that the co-pyrolysis product possessed a high adsorption capacity for Cd (95.70 mg/g at 318 K). The formation of CdCO precipitates and the complexation effects of oxygen-containing functional groups were the principal adsorption mechanisms of the co-pyrolysis product. Overall, this study provides new insights into sustainable disposal and resource utilization for heavy metal-contaminated DS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.117502DOI Listing

Publication Analysis

Top Keywords

co-pyrolysis
18
co-pyrolysis product
12
co-pyrolysis treatment
12
total concentrations
12
co-pyrolysis products
12
pine sawdust
8
dredged sediment
8
adsorption capacity
8
heavy metal-contaminated
8
resource utilization
8

Similar Publications

Adsorption properties and mechanisms of Cd by co-pyrolysis composite material derived from peanut biochar and tailing waste.

Environ Geochem Health

January 2025

College of Resource and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resource, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.

Cadmium (Cd) contamination in aquatic systems is a widespread environmental issue. In this study, a solid waste iron tailings and biochar hybrid (Fe-TWBC) was successfully synthesized derived from co-pyrolysis of peanut shell and tailing waste (Fe-TW). Characterization analyses showed that the metal oxides from solid waste iron tailings successfully loaded onto the biochar surface, with more functional groups in Fe-TWBC.

View Article and Find Full Text PDF

Sustainable production of 2,5-diformylfuran via peroxymonosulfate-triggered mild catalytic oxidation of lignocellulosic biomass.

PNAS Nexus

January 2025

CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.

The relentless depletion of fossil fuels accentuates the urgent necessity for the sustainable synthesis of chemicals from renewable biomass. 5-Hydroxymethylfurfural (HMF), extracted from lignocellulosic biomass, emerges as a beacon of hope for conversion into value-added chemicals. However, the inherent susceptibility of its unsaturated aldehyde groups to excessive oxidation often culminates in undesired reactions, compromising both the yield and specificity of the desired products.

View Article and Find Full Text PDF

The purpose of this study is to examine how co-pyrolysis of low-density polyethylene (LDPE) and rice husk is impacted by LDPE. It also looks into the physicochemical characteristics, thermal behavior, and kinetic parameters of these materials. To understand the thermal behavior through TGA, rice husk and LDPE blends in the ratios of LDPE: RH (50:50), LDPE: RH (25:75), and LDPE: RH (75:25) were prepared and tested.

View Article and Find Full Text PDF

To explore the effects of the components in the raw materials and by-products of co-pyrolysis on the physicochemical properties of biochar, rice husk (RH, which has a high percentage of lignin and a low content of N) and sawdust (SD, which has a high percentage of both cellulose and N) were used as typical raw materials to prepare co-pyrolysis biochar. The benzene vapor adsorption performance of the obtained biochar was then tested on a fixed-bed device. At the same time, the by-product components generated during pyrolysis were analyzed using thermogravimetric (TG), scanning electron microscopy (SEM), and gas chromatography-mass spectrometry (GC-MS).

View Article and Find Full Text PDF

Plastic blends were co-pyrolyzed under non-isothermal conditions in a thermogravimetric (TG) analyzer. The co-pyrolysis characteristics and kinetic triplet, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!