Among the complications that can occur at dental implants, the fracture of any implant component is a relatively infrequent but clinically relevant problem. Because of their mechanical characteristics, small diameter implants are at higher risk of such complication. The aim of this laboratory and finite element method (FEM) study was to compare the mechanical behavior of a 2.9- and 3.3-mm-diameter implant with a conical connection under standard static and dynamic conditions, following the International Organization for Standardization (ISO) 14801:2017. Finite element analysis was performed to compare the stress distribution on the tested implant systems under a 300-N, 30° inclined force. Static tests were performed with a load cell of 2 kN; the force was applied on the experimental samples at 30° with respect to the implant-abutment axis, with an arm of 5.5 mm. Fatigue tests were performed with decreasing loads, at 2-Hz frequency, until 3 specimens survived without any damage after 2 million cycles. The emergence profile of the abutment resulted the most stressed area in finite element analysis, with a maximum stress of 5829 and 5480 MPa for 2.9- and 3.3-mm-diameter implant complex, respectively. The mean maximum load resulted in 360 N for 2.9-mm-diameter and 370 N for 3.3-mm-diameter implants. The fatigue limit was recorded to be 220 and 240 N, respectively. Despite the more favorable results of 3.3-mm-diameter implants, the difference between the tested implants could be considered clinically negligible. This is probably due to the conical design of the implant-abutment connection, which has been reported to present low stress values in the implant neck region, thus increasing the fracture resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1563/aaid-joi-D-21-00258 | DOI Listing |
J Clin Orthop Trauma
November 2024
Department of Orthopaedics, All India Institute of Medical Sciences, Rishikesh, India, 249203.
Orthopedic surgery and traumatology necessitate cost-effective approaches that can be replicated across multiple venues. Finite Element (FE) simulation models have evolved as a solution, allowing for consistent investigations into biomechanical systems. Finite Element Analysis (FEA), which began in the 1950s aviation industry, has since expanded into orthopedics.
View Article and Find Full Text PDFJOR Spine
March 2025
Department of Orthopedics, Luzhou Key Laboratory of Orthopedic Disorders, The Affiliated Traditional Chinese Medicine Hospital Southwest Medical University Luzhou Sichuan Province People's Republic of China.
Background: There are differences in the extent of excision of articular processes, spinal processes and posterior ligamentum complexes (PLC) for posterior approach lumbar interbody fusion. Given that the biomechanical significance of these structures has been verified and that deterioration of the biomechanical environment is the main trigger for complications in both fused and adjacent motion segments, changes in decompression ranges may affect the potential risk of adjacent segmental disease (ASD) biomechanically; however, this topic has yet to be identified.
Methods: Posterior lumbar interbody fusion (PLIF) with different decompression strategies was simulated in a well-validated lumbosacral model.
J Orthop Surg Res
January 2025
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
Background: Meniscus tears can change the biomechanical environment of the knee joint and might accelerate the development of osteoarthritis. The aim of this study was to investigate the dynamic biomechanical effects of different medial meniscus tear positions and tear gaps on the knee during walking.
Methods: Seven finite element models of the knee joint were constructed, including the intact medial meniscus (IMM), radial stable tears in the anterior, middle, and posterior one-third regions of the medial meniscus (RSTA, RSTM, RSTP), and the corresponding unstable tears (RUTA, RUTM, RUTP).
Sci Rep
January 2025
ISQI, Faculty of Physics, Adam Mickiewicz University in Poznań, Poznań, Poland.
High-resolution Brillouin spectroscopy was employed to investigate the anisotropy in surface wave velocities within a bulk single crystal of SbTe, a well-known layered van der Waals material. By leveraging the bulk elastic constants derived from various simulation methods, we were able to theoretically calculate the distribution of surface acoustic phonon velocities on the cleavage plane of the material. Upon analyzing multiple simulation results, it became evident that the most significant discrepancies arose in the calculations of the elastic constant c, with values ranging from 48 to 98 GPa.
View Article and Find Full Text PDFInt Dent J
January 2025
Department of Prosthodontics, Dalian Stomatological Hospital, Dalian, China. Electronic address:
Introduction And Aims: Implantation of the posterior maxilla with insufficient bone height faces challenges. Studies have shown that the use of ultrashort implants can avoid additional damage. This finite element analysis study aimed to evaluate the impacts of different lengths of ultrashort implants and three surgical approaches on stress, strain, and displacement in the posterior maxilla with varying bone heights.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!