Bimetallic metal organic frameworks (BMOFs) are a class of crystalline solids and their structure comprises two metal ions in the lattice. BMOFs show a synergistic effect of two metal centres and enhanced properties compared to MOFs. By controlling the composition and relative distribution of two metal ions in the lattice the structure, morphology, and topology of BMOFs could be regulated resulting in an improvement in the tunability of pore structure, activity, and selectivity. Thus, developing BMOFs and BMOF incorporated membranes for applications such as adsorption, separation, catalysis, and sensing is a promising strategy to mitigate environmental pollution and address the looming energy crisis. Herein we present an overview of recent advancements in the area of BMOFs and a comprehensive review of BMOF incorporated membranes reported to date. The scope, challenges as well as future perspectives for BMOFs and BMOF incorporated membranes are presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cplu.202200420 | DOI Listing |
Mater Today Bio
February 2025
Department of Orthopedics, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), NO.38, Wuyingshan Road, Tianqiao District, Jinan, 250031, China.
The bacterial infection and oxidative wound microenvironment delay skin repair and necessitate intelligent wound dressings to enable scarless wound healing. The immunoglobulin of yolk (IgY) exhibits immunotherapeutic potential for the potential treatment of antimicrobial-resistant pathogens, while cerium oxide nanoparticles (CeO NPs) could scavenge superoxide dismutase (SOD) and inflammation. The overarching objective of this study was to incorporate IgY and CeO NPs into poly(L-lactide-co-glycolide)/gelatin (PLGA/Gel)-based dressings (P/G@IYCe) for infected skin repair.
View Article and Find Full Text PDFWorld J Gastroenterol
January 2025
Department of Gastroenterology, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230001, Anhui Province, China.
Inflammatory bowel disease, particularly Crohn's disease (CD), has been linked to modifications in mesenteric adipose tissue (MAT) and the phenomenon known as "creeping fat" (CrF). The presence of CrF is believed to serve as a predictor for early clinical recurrence following surgical intervention in patients with CD. Notably, the incorporation of the mesentery during ileocolic resection for CD has been correlated with a decrease in surgical recurrence, indicating the significant role of MAT in the pathogenesis of CD.
View Article and Find Full Text PDFHeliyon
January 2025
Amity Institute of Microbial Technology, Amity University Rajasthan, Kant Kalwar, Jaipur, 303002, Rajasthan, India.
The goal of this research is to develop and characterize low-cost NHI doped polyvinyl alcohol (PVA)-4-ethyl-4-methylmorpholiniumbromide (ionic liquid) anion exchange membranes (AEM) and its application for membrane cathode assembly. Physical characterization like FTIR, POM, and XRD notified the functional groups, basic structure, and amorphosity of the produced membrane, and it was employed in single-chambered microbial fuel cells (sMFCs) as a separator. The membranes in terms of oxygen diffusion, proton conductivity, and ion exchange capabilities were evaluated.
View Article and Find Full Text PDFJ R Stat Soc Ser A Stat Soc
January 2025
Biostatistics, University of Michigan, 1415 Washington Heights, Michigan 48109, USA.
Model integration refers to the process of incorporating a fitted historical model into the estimation of a current study to increase statistical efficiency. Integration can be challenging when the current model includes new covariates, leading to potential model misspecification. We present and evaluate seven existing and novel model integration techniques, which employ both likelihood constraints and Bayesian informative priors.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Tianjin University, State Key Laboratory of Engines, CHINA.
Improving the alkaline hydrogen evolution reaction (HER) efficiency is essential for developing advanced anion exchange membrane water electrolyzers (AEMWEs) that operate at industrial ampere-level currents. Herein, we employ density functional theory (DFT) calculations to identify Ni-RuO2 as the leading candidate among various 3d transition metal-doped M-RuO2 (where metal M includes Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn). The incorporation of Ni atoms facilitates the partial reduction of RuO2, resulting in the formation of a Ni-Ru/RuO2 interface having a significant built-in electric field (BIEF) during electrochemical reactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!