HIV-1 strains are categorized into one of three neutralization tiers based on the relative ease by which they are neutralized by plasma from HIV-1-infected donors not on antiretroviral therapy; tier-1 strains are particularly sensitive to neutralization while tier-2 and tier-3 strains are increasingly difficult to neutralize. Most broadly neutralizing antibodies (bnAbs) previously described target the native prefusion conformation of HIV-1 Envelope (Env), but the relevance of the tiered categories for inhibitors targeting another Env conformation, the prehairpin intermediate, is not well understood. Here, we show that two inhibitors targeting distinct highly conserved regions of the prehairpin intermediate have strikingly consistent neutralization potencies (within ~100-fold for a given inhibitor) against strains in all three neutralization tiers of HIV-1; in contrast, best-in-class bnAbs targeting diverse Env epitopes vary by more than 10,000-fold in potency against these strains. Our results indicate that antisera-based HIV-1 neutralization tiers are not relevant for inhibitors targeting the prehairpin intermediate and highlight the potential for therapies and vaccine efforts targeting this conformation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974412 | PMC |
http://dx.doi.org/10.1073/pnas.2215792120 | DOI Listing |
J Virol
November 2024
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA.
HIV-1 delivers its genetic material to infect a cell after fusion of the viral and host cell membranes, which takes place after the viral envelope (Env) binds host receptor and co-receptor proteins. Binding of host receptor CD4 to Env results in conformational changes that allow interaction with a host co-receptor (CCR5 or CXCR4). Further conformational rearrangements result in an elongated pre-hairpin intermediate structure in which Env is anchored to the viral membrane by its transmembrane region and to the host cell membrane by its fusion peptide.
View Article and Find Full Text PDFbioRxiv
August 2024
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, 91125, USA.
HIV-1 delivers its genetic material to infect a cell after fusion of the viral and host cell membranes, which takes place after the viral envelope (Env) binds host receptor and co-receptor proteins. Binding of host receptor CD4 to Env results in conformational changes that allow interaction with a host co-receptor (CCR5 or CXCR4). Further conformational rearrangements result in an elongated pre-hairpin intermediate structure in which Env is anchored to the viral membrane by its transmembrane region and to the host cell membrane by its fusion peptide.
View Article and Find Full Text PDFCurr Res Microb Sci
July 2024
Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Fudan University, Shanghai, China.
The highly conserved hydrophobic pocket region of HIV-1 gp41 NHR triple-stranded coiled coil is crucial for the binding of CHR to NHR to form a six-helix bundle (6-HB). This pocket is only exposed instantaneously during fusion, making it an ideal target for antibody drug design. However, IgG molecule is too big to enter the pocket during the fusion process.
View Article and Find Full Text PDFScience
August 2024
Department of Microbial Pathogenesis, Yale University, New Haven, CT, USA.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein binds the receptor angiotensin converting enzyme 2 (ACE2) and drives virus-host membrane fusion through refolding of its S2 domain. Whereas the S1 domain contains high sequence variability, the S2 domain is conserved and is a promising pan-betacoronavirus vaccine target. We applied cryo-electron tomography to capture intermediates of S2 refolding and understand inhibition by antibodies to the S2 stem-helix.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2023
HHMI, Stanford University, Stanford, CA 94305.
The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) introduced a relatively large number of mutations, including three mutations in the highly conserved heptad repeat 1 (HR1) region of the spike glycoprotein (S) critical for its membrane fusion activity. We show that one of these mutations, N969K induces a substantial displacement in the structure of the heptad repeat 2 (HR2) backbone in the HR1HR2 postfusion bundle. Due to this mutation, fusion-entry peptide inhibitors based on the Wuhan strain sequence are less efficacious.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!