Multidisciplinary evaluation of plant growth promoting rhizobacteria on soil microbiome and strawberry quality.

AMB Express

Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR, 97331, USA.

Published: February 2023

The natural soil environment is considered one of the most diverse habitats containing numerous bacteria, fungi, and larger organisms such as nematodes, insects, or rodents. Rhizosphere bacteria play vital roles in plant nutrition and the growth promotion of their host plant. The aim of this study was to evaluate the effects of three plant growth-promoting rhizobacteria (PGPR), Bacillus subtilis, Bacillus amyloliquefaciens, and Pseudomonas monteilii for their potential role as a biofertilizer. The effect of the PGPR was examined at a commercial strawberry farm in Dayton, Oregon. The PGPR were applied to the soil of the strawberry (Fragaria × ananassa cultivar Hood) plants in two different concentrations of PGPR, T1 (0.24% PGPR) and T2 (0.48% PGPR), and C (no PGPR). A total of 450 samples from August 2020 to May 2021 were collected, and microbiome sequencing based on the V4 region of the 16S rRNA gene was conducted. The strawberry quality was measured by sensory evaluation, total acidity (TA), total soluble solids (TSS), color (lightness and chroma), and volatile compounds. Application of the PGPR significantly increased the populations of Bacillus and Pseudomonas and promoted the growth of nitrogen-fixing bacteria. The TSS and color evaluation showed that the PGPR presumptively behaved as a ripening enhancer. The PGPR contributed to the production of fruit-related volatile compounds, while the sensory evaluation did not show significant differences among the three groups. The major finding of this study suggests that the consortium of the three PGPR have a potential role as a biofertilizer by supporting the growth of other microorganisms (nitrogen-fixing bacteria) as part of a synergetic effect and strawberry quality such as sweetness and volatile compounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9935790PMC
http://dx.doi.org/10.1186/s13568-023-01524-zDOI Listing

Publication Analysis

Top Keywords

strawberry quality
12
volatile compounds
12
pgpr
11
potential role
8
role biofertilizer
8
sensory evaluation
8
tss color
8
nitrogen-fixing bacteria
8
strawberry
5
multidisciplinary evaluation
4

Similar Publications

Strawberry fruits are highly perishable and have a limited shelf life. Therefore, effective methods such as essential oils (EOs) and edible coatings are required to mitigate spoilage and maintain fruit quality during storage. In the current study, Echinophora platyloba EO was extracted and subsequently formulated into a nanoemulsion.

View Article and Find Full Text PDF

Strawberries are valued globally for their nutritional, aesthetic, and economic benefits. Optimizing blue-to-red LED ratios and nitrogen levels is essential for sustainable indoor strawberry cultivation. This factorial study investigated the effects of blue and red LED combination ratios (L1; 1:3, L2; 1:4, and L3; 1:6) and nitrogen levels (N1; 100 and N2; 200 mg/L) on the physiology and performance of strawberries in a plant factory.

View Article and Find Full Text PDF

This study investigated the effects of chitosan/gelatin (CG) coatings containing pomegranate peel extract (PPE) on the physical-chemical, microbiological, volatile profile, and sensory characteristics of strawberries over 12 days of refrigerated storage. The coatings containing PPE minimized the weight loss of the fruits by 11 % and delayed their fungal contamination by 6-8 days. Uncoated fruits showed soluble solids content, pH, and titratable acidity values characteristics of highly deteriorated fruits.

View Article and Find Full Text PDF

A carboxymethyl cellulose-based pH-responsive chlorine dioxide release film for strawberry preservation.

Int J Biol Macromol

January 2025

Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao; Zhuhai MUST Science and Technology Research Institute, Zhuhai 519031, Guangdong, China. Electronic address:

Fruit spoilage caused by microorganisms results in huge economic losses and health risks worldwide every year. To develop an intelligent antimicrobial material capable of responding to the physiological activity of postharvest fruits and releasing antibacterial agents on demand, we fabricated a pH-responsive film for the release of chlorine dioxide (ClO) using carboxymethyl cellulose (CMC) and sodium chlorite (NaClO) via the solution casting method, with a CMC:NaClO ratio of 1:2 w/w. An acid environment simulated by 4 % acetic acid activated 43 % of ClO released by the film within 7 days.

View Article and Find Full Text PDF

Strawberry (Fragaria × ananassa) is a horticultural crop known for its sensitivity to mechanical damage and susceptibility to postharvest decay. In recent years, various strategies have been implemented to enhance both the yield and quality of strawberries, among which the application of nitric oxide-producing compounds has garnered special attention. The present study aimed to investigate the effects of varying concentrations of sodium nitroprusside (SNP), specifically 0, 200, 400, and 600 μM, on strawberries (cv.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!