Salt-Induced Doping and Templating of Laser-Induced Graphene Supercapacitors.

ACS Appl Mater Interfaces

Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada.

Published: March 2023

The use of inexpensive and widely available CO lasers to selectively irradiate polymer films and form a graphene foam, termed laser-induced graphene (LIG), has incited significant research attention. The simple and rapid nature of the approach and the high conductivity and porosity of LIG have motivated its widespread application in electrochemical energy storage devices such as batteries and supercapacitors. However, nearly all high-performance LIG-based supercapacitors reported to date are prepared from costly, petroleum-based polyimide (Kapton, PI). Herein, we demonstrate that incorporating microparticles of inexpensive, non-toxic, and widely abundant sodium salts such as NaCl and NaSO into poly(furfuryl alcohol) (PFA) resins enables the formation of high-performance LIG. The embedded particles aid in carbonization and act as a template for pore formation. While increasing both the carbon yield and surface area of the electrodes, the salt also dopes the LIG formed with S or Cl. The combination of these effects results in a two- to four-order-of-magnitude increase in device areal capacitance, from 8 μF/cm for PFA/no salt at 5 mV/s to up to 80 mF/cm for some PFA/20% NaSO samples at 0.05 mA/cm, significantly higher than that of PI-based devices and most other LIG precursors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c17476DOI Listing

Publication Analysis

Top Keywords

laser-induced graphene
8
lig
5
salt-induced doping
4
doping templating
4
templating laser-induced
4
graphene supercapacitors
4
supercapacitors inexpensive
4
inexpensive lasers
4
lasers selectively
4
selectively irradiate
4

Similar Publications

Laser-Induced Graphene Electrodes for Flexible pH Sensors.

Nanomaterials (Basel)

December 2024

Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy.

In the growing field of personalized medicine, non-invasive wearable devices and sensors are valuable diagnostic tools for the real-time monitoring of physiological and biokinetic signals. Among all the possible multiple (bio)-entities, pH is important in defining health-related biological information, since its variations or alterations can be considered the cause or the effect of disease and disfunction within a biological system. In this work, an innovative (bio)-electrochemical flexible pH sensor was proposed by realizing three electrodes (working, reference, and counter) directly on a polyimide (Kapton) sheet through the implementation of CO laser writing, which locally converts the polymeric sheet into a laser-induced graphene material (LIG electrodes), preserving inherent mechanical flexibility of Kapton.

View Article and Find Full Text PDF

Unconventional aspects in metal-embedded laser-induced graphene.

Chem Sci

December 2024

Department of Chemistry & Biochemistry, Department of Materials Science & Engineering, California NanoSystems Institute, University of California, Los Angeles Los Angeles CA 90095 USA

Laser-induced graphene (LIG) has gained significant attention, with over 170 publications in 2023 alone. This surge in popularity is due to the unique advantages LIG offers over traditional thermal methods, such as fast, solvent-free, scalable production and its ability to scribe intricate patterns on various substrates, including heat-sensitive materials like plastics. In recent developments, metal-embedded LIG (M-LIG) has expanded the potential applications of LIG, particularly in energy storage, microelectronics, and sensing.

View Article and Find Full Text PDF

Emerging contaminants are a matter of growing concern for environmental and human health and safety, requiring efficient and affordable sensing platforms. Laser-induced graphene (LIG) is a novel material with a 3D porous graphene structure that can be fabricated in a simple one-step fabrication process. However, most LIG-based works in electrochemical sensors are limited to polyimide (PI)-based platforms, thus limiting the purview of properties of LIG dependent on the substrate-laser interaction.

View Article and Find Full Text PDF

The use of pesticides has significantly increased and proliferated following the technological advancements established by the green revolution, aimed at boosting agricultural productivity. The extensive use of man-made chemicals as fertilizer and pesticides has consequently led to large-scale application, which has led to a number of environmental and human health problems. This study has helped to develop a laser-induced graphene (LIG) sensor for the detection of the most widely used herbicide in the world, glyphosate.

View Article and Find Full Text PDF

The reliable detection of ammonia at room temperature is crucial for not only maintaining environmental safety but also for reducing the risks of hazardous pollutants. In this study, the electrochemical modification of laser-induced graphene (LIG) with polyaniline (PANI) led to the development of a chemo-resistive nanocomposite (PANI@LIG) for detecting ammonia levels at room temperature. The composite is characterized by field emission scanning electron microscopy, Fourier transforms infrared, and Raman and X-ray photoelectron spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!