Stimuli-responsive biomaterials may be used to better control the release of bioactive molecules or cells for applications involving drug delivery and controlled cell release. In this study, we developed a Factor Xa (FXa)-responsive biomaterial capable of controlled release of pharmaceutical agents and cells from in vitro culture. FXa-cleavable substrates were formed as hydrogels that degraded in response to FXa enzyme over several hours. Hydrogels were shown to release both heparin and a model protein in response to FXa. Additionally, RGD-functionalized FXa-degradable hydrogels were used to culture mesenchymal stromal cells (MSCs), enabling FXa-mediated cell dissociation from hydrogels in a manner that preserved multicellular structures. Harvesting MSCs using FXa-mediated dissociation did not influence their differentiation capacity or indoleamine 2,3-dioxygenase (IDO) activity (a measure of immunomodulatory capacity). In all, this FXa-degradable hydrogel is a novel responsive biomaterial system that may be used for on-demand drug delivery, as well as for improving processes for in vitro culture of therapeutic cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.37513DOI Listing

Publication Analysis

Top Keywords

drug delivery
8
vitro culture
8
response fxa
8
development characterization
4
characterization factor
4
factor xa-responsive
4
xa-responsive materials
4
materials applications
4
applications cell
4
culture
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!