A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Empagliflozin and Renal Sodium-Hydrogen Exchange in Healthy Subjects. | LitMetric

Empagliflozin and Renal Sodium-Hydrogen Exchange in Healthy Subjects.

J Clin Endocrinol Metab

Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa I-56126, Italy.

Published: July 2023

Context: Sodium glucose co-transporter-2 inhibitors exert clinically relevant cardiorenal protection. Among several mechanisms, inhibition of sodium-hydrogen exchanger-3 (NHE3) in proximal renal tubules has been proposed in rodents. Demonstration of this mechanism with the associated electrolyte and metabolic changes in humans is lacking.

Objective: The present proof-of-concept study was designed to explore the involvement of NHE3 in modulating the response to sodium glucose co-transporter-2 inhibitors in humans.

Methods: Twenty healthy male volunteers received 2 tablets of empagliflozin 25 mg during a standardized hydration scheme; freshly voided urines and blood samples were collected at timed intervals for 8 hours. Protein expression of relevant transporters was examined in exfoliated tubular cells.

Results: Urine pH levels increased after empagliflozin (from 5.81 ± 0.5 to 6.16 ± 0.6 at 6 hours, P = .008) as did urinary output (from median, 1.7; interquartile range [IQR, 0.6; 2.5] to 2.5 [IQR, 1.7; 3.5] mL/min-1, P = .008) and glucose (from median, 0.03 [IQR, 0.02; 0.04] to 34.8 [IQR, 31.6; 40.2] %, P < .0001), and sodium fractional excretion rates (from median, 0.48 [IQR, 0.34; 0.65] to 0.71 [IQR, 0.55; 0.85] %, P = .0001), whereas plasma glucose and insulin concentrations decreased and plasma and urinary ketones increased. Nonsignificant changes in NHE3, phosphorylated NHE3, and membrane-associated protein 17 protein expression were detected in urinary exfoliated tubular cells. In a time-control study in 6 participants, neither urine pH nor plasma and urinary parameters changed.

Conclusions: In healthy young volunteers, empagliflozin acutely increases urinary pH while inducing a substrate shift toward lipid utilization and ketogenesis, without significant changes in renal NHE3 protein expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10348461PMC
http://dx.doi.org/10.1210/clinem/dgad088DOI Listing

Publication Analysis

Top Keywords

protein expression
12
sodium glucose
8
glucose co-transporter-2
8
co-transporter-2 inhibitors
8
exfoliated tubular
8
plasma urinary
8
[iqr
6
nhe3
5
urinary
5
empagliflozin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!