Dracocephalum Moldavica L. is a traditional herb for improving pharynx and relieving cough. However, the effect on pulmonary fibrosis is not clear. In this study, we explored the impact and molecular mechanism of total flavonoid extract from Dracocephalum moldavica L. (TFDM) on bleomycin-induced pulmonary fibrosis mouse model. Lung function testing, lung inflammation and fibrosis, and the related factors were detected by the lung function analysis system, HE and Masson staining, ELISA, respectively. The expression of proteins was studied through Western Blot, immunohistochemistry, and immunofluorescence while the expression of genes was analyzed by RT-PCR. The results showed that TFDM significantly improved lung function in mice, reduced the content of inflammatory factors, thereby reducing the inflammation. It was found that expression of collagen type I, fibronectin, and α-smooth muscle actin was significantly decreased by TFDM. The results further showed that TFDM interferes with hedgehog signaling pathway by decreasing the expression of Shh, Ptch1, and SMO proteins and thereby inhibiting the generation of downstream target gene Gli1 and thus improving pulmonary fibrosis. Conclusively, these findings suggest that TFDM improve pulmonary fibrosis by reducing inflammation and inhibition of the hedgehog signaling pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ptr.7771 | DOI Listing |
Sci Rep
December 2024
Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ, USA.
Idiopathic pulmonary fibrosis (IPF) is a fatal disease defined by a progressive decline in lung function due to scarring and accumulation of extracellular matrix (ECM) proteins. The SOCS (Suppressor Of Cytokine Signaling) domain is a 40 amino acid conserved domain known to form a functional ubiquitin ligase complex targeting the Von Hippel Lindau (VHL) protein for proteasomal degradation. Here we show that the SOCS conserved domain operates as a molecular tool, to disrupt collagen and fibronectin fibrils in the ECM associated with fibrotic lung myofibroblasts.
View Article and Find Full Text PDFFront Immunol
December 2024
Priority Area Chronic Lung Diseases, Research Center Borstel - Leibniz Lung Center, Members of the German Center for Lung Research (DZL), Borstel, Germany.
Introduction: Autoantibody-mediated complement activation plays an essential role in a variety of autoimmune disorders. However, the role of complement in systemic sclerosis (SSc) remains largely unknown. In this study, we aimed to determine the role of complement C3 in the development of a recently described SSc mouse model based on autoimmunity to angiotensin II receptor type 1 (AT1R).
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Acute exacerbations of idiopathic pulmonary fibrosis (AE-IPF) are the leading cause of mortality among patients with IPF. There is still a lack of effective treatments for AE-IPF, resulting in a hospitalization mortality rate as high as 70%-80%. To reveal the complicated mechanism of AE-IPF, more attention has been paid to its disturbed immune environment, as patients with IPF exhibit deficiencies in pathogen defense due to local immune dysregulation.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
Objectives: Little is known about how various treatments impact the progression of interstitial lung disease (ILD) in rheumatoid arthritis (RA) patients. Here, we compared ILD progression in RA patients treated with Janus kinase inhibitors (JAKi) or biological disease-modifying anti-rheumatic drugs (bDMARDs). experiments were also performed to evaluate the potential effects of the drugs on epithelial-mesenchymal transition (EMT), a key event in pulmonary fibrosis.
View Article and Find Full Text PDFJ Inflamm Res
December 2024
Department of Traumatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 40014, People's Republic of China.
Purpose: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease. PANoptosis, a unique inflammatory programmed cell death, it manifests as the simultaneous activation of signaling markers for pyroptosis, apoptosis, and necroptosis. However, research on the role of PANoptosis in the development of IPF is currently limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!