3-Chloro-,-di-methyl-propan-1-aminium chloride.

IUCrdata

Department of Chemistry and Physics, Southeast Missouri State University, Cape Girardeau, MO 63701, USA.

Published: January 2023

The organic cation in the title mol-ecular salt, CHNCl·Cl, exhibits the effect with a C-H bond of the C atom β to the chloro group donating electrons to the anti-bonding orbital of the C-Cl bond to stabilize the conformation [Cl-C-C-C = -68.6 (6)°], as confirmed by DFT geometry optimizations that show a lengthening of the C-Cl bond relative to that of the conformation. Of further inter-est is the higher point group symmetry of the crystal (), compared that of the that of the mol-ecular cation, which arises from a supra-molecular head-to-tail square arrangement of four mol-ecular cations that circulate in a counterclockwise direction when viewed down the tetra-gonal axis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9912320PMC
http://dx.doi.org/10.1107/S2414314623000159DOI Listing

Publication Analysis

Top Keywords

c-cl bond
8
3-chloro--di-methyl-propan-1-aminium chloride
4
chloride organic
4
organic cation
4
cation title
4
title mol-ecular
4
mol-ecular salt
4
salt chncl·cl
4
chncl·cl exhibits
4
exhibits c-h
4

Similar Publications

Epichlorohydrin is used as an intermediate for the synthesis of polymers and, more particularly, epoxy adhesives. The traditional process involves the cleavage of the carbon-chlorine bond in an alkaline solution. Here, we investigate the breakage of this bond induced by low-energy (<10 eV) electrons.

View Article and Find Full Text PDF

A pronounced nucleophilicity in combination with a distinct redox non-innocence is a unique feature of a coordinated ligand, which in the current case, leads to unprecedented carbon-centered reactivity patterns: A carbodiphosphorane-based (CDP) pincer-type rhodium complex allows to cleave two C-Cl-bonds of geminal dichlorides via two consecutive SN2-type oxidative additions resulting in the formation of a stabilized carbene fragment. In the presence of a suitable reductant the carbene fragment can even be converted into olefines or hydrodehalogenation products in a catalytic reaction. The developed method can also be used to convert chlorofluorocarbons (CFCs) such as CH2ClF to fluoromethane and methane.

View Article and Find Full Text PDF

Insights from multiple stable isotopes (C, N, Cl) into the photodegradation of herbicides atrazine and metolachlor.

Chemosphere

February 2025

Département des sciences de la Terre et de l'atmosphère, Université du Québec à Montréal, Montréal, QC, H2X 1Y4, Canada; Geotop Research Centre, Montréal, QC, H2X 3Y7, Canada. Electronic address:

Many processes can contribute to the attenuation of the frequently detected and toxic herbicides atrazine and metolachlor in surface water, including photodegradation. Multi-element compound-specific isotope analysis has the potential to decipher between these different degradation pathways as Cl is a promising tool for both pathway identification and a sensitive indicator of degradation for both atrazine and metolachlor. In this study, photodegradation experiments of atrazine and metolachlor were conducted under simulated sunlight in buffered solutions (direct photodegradation) and with nitrate (indirect photodegradation by OH radicals) to determine kinetics, transformation products and isotope fractionation for C, N and for the first time Cl.

View Article and Find Full Text PDF

Symmetry Breaking in the Lowest-Lying Excited-State of CCl: Valence Shell Spectroscopy in the 5.0-10.8 eV Photon Energy Range.

Molecules

November 2024

Atomic and Molecular Collisions Laboratory, CEFITEC-Centre of Physics and Technological Research, Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.

We report absolute high-resolution vacuum ultraviolet (VUV) photoabsorption cross-sections of carbon tetrachloride (CCl) in the photon energy range 5.0-10.8 eV (248-115 nm).

View Article and Find Full Text PDF

Chlorine Substitution Effect on the S Relaxation Dynamics of Chlorobenzene and Chlorophenols.

J Phys Chem A

December 2024

Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea.

The S state relaxation dynamics of chlorobenzene (CB), 3-chlorophenol (3-CP), 3-CP·HO, and 2-chlorophenol·HO (2-CP·HO) have been investigated by means of picosecond time-resolved pump-probe spectroscopy in a state-specific manner. For CB, the S state relaxes via the S-S internal conversion in the low internal energy region (<2000 cm), whereas the direct C-Cl bond dissociation channel mediated by the upper-lying repulsive πσ* state is opened to give the rather sharp increase of the S relaxation rate in the high internal energy region (>2000 cm). A similar dynamic feature has been observed for 3-CP in terms of the lifetime behavior with an increase in the S internal energy, suggesting that the H atom tunneling dissociation reaction from OH might contribute less compared to the internal conversion, although it is not clear at the present time whether or not the sharp increase of the S relaxation rate in the high internal energy region of 3-CP (>1500 cm) is entirely due to that of the internal conversion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!