Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Herein, magnetite nanoparticles (NPs), zeolite A and magnetite-zeolite A (MAGZA) composite was developed by green methods. The produced nanomaterials were characterized and the effect of process parameters such as flow rate, adsorbent bed height and adsorbate inlet concentration was evaluated for the removal of biological oxygen demand (BOD), chemical oxygen demand (COD) and total organic carbon (TOC) in a column. The characterization results demonstrated the successful synthesis of magnetite NPs, zeolite A and MAGZA composite. The performance of the MAGZA composite in the fixed-bed column was superior to zeolite A and magnetite NPs. The parametric influence indicates that an increase in bed height and a decrease in the flow rate and inlet adsorbate concentration improved the performance of the adsorption column. The adsorption column demonstrated maximum performance at a flow rate (4 mL/min), bed height (5 cm) and inlet adsorbate concentration (10 mg/L). Under these conditions, the highest percent removal of BOD, COD and TOC were 99.96, 99.88 and 99.87%. Thomas and Yoon-Nelson's model suitably fitted the breakthrough curves. After five reusability cycles, the MAGZA composite demonstrated removal percent of BOD (76.5%), COD (55.5%) and TOC (64.2%). The produced MAGZA composite effectively removed BOD, COD and TOC from textile wastewater in a continuous operating mode.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9922975 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e13095 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!