A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Clustering and prediction of disease progression trajectories in Huntington's disease: An analysis of Enroll-HD data using a machine learning approach. | LitMetric

Introduction: Huntington's disease (HD) is a rare neurodegenerative disease characterized by cognitive, behavioral and motor symptoms that progressively worsen with time. Cognitive and behavioral signs of HD are generally present in the years prior to a diagnosis; however, manifest HD is typically assessed by genetic confirmation and/or the presence of unequivocal motor symptoms. Nevertheless, there is a large variation in symptom severity and rate of progression among individuals with HD.

Methods: In this retrospective study, longitudinal natural history of disease progression was modeled in individuals with manifest HD from the global, observational Enroll-HD study (NCT01574053). Unsupervised machine learning (k-means; km3d) was used to jointly model clinical and functional disease measures simultaneously over time, based on one-dimensional clustering concordance such that individuals with manifest HD ( = 4,961) were grouped into three clusters: rapid (Cluster A; 25.3%), moderate (Cluster B; 45.5%) and slow (Cluster C; 29.2%) progressors. Features that were considered predictive of disease trajectory were then identified using a supervised machine learning method (XGBoost).

Results: The cytosine adenine guanine-age product score (a product of age and polyglutamine repeat length) at enrollment was the top predicting feature for cluster assignment, followed by years since symptom onset, medical history of apathy, body mass index at enrollment and age at enrollment.

Conclusions: These results are useful for understanding factors that affect the global rate of decline in HD. Further work is needed to develop prognostic models of HD progression as these could help clinicians with individualized clinical care planning and disease management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9923354PMC
http://dx.doi.org/10.3389/fneur.2022.1034269DOI Listing

Publication Analysis

Top Keywords

machine learning
12
disease
8
disease progression
8
huntington's disease
8
cognitive behavioral
8
motor symptoms
8
individuals manifest
8
clustering prediction
4
prediction disease
4
progression
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!