Creating a complex balance between dietary composition, circadian rhythm, and the hemostasis control of energy is important for managing diseases. Therefore, we aimed to determine the interaction between cryptochrome circadian clocks 1 polymorphism and energy-adjusted dietary inflammatory index (E-DII) on high-sensitivity C-reactive protein in women with central obesity. This cross-sectional study recruited 220 Iranian women aged 18-45 with central obesity. The 147-item semi-quantitative food frequency questionnaire was used to assess the dietary intakes, and the E-DII score was calculated. Anthropometric and biochemical measurements were determined. By polymerase chain response-restricted length polymorphism method, cryptochrome circadian clocks 1 polymorphism was assigned. Participants were categorized into three groups based on the E-DII score, then categorized according to cryptochrome circadian clocks 1 genotypes. The mean and standard deviation of age, BMI, and high-sensitivity C-reactive protein (hs-CRP) were 35.61 ± 9.57 years, 30.97 ± 4.16 kg/m, and 4.82 ± 5.16 mg/dL, respectively. The interaction of the CG genotype and E-DII score had a significant association with higher hs-CRP level compared to GG genotype as the reference group (β, 1.19; 95% CI, 0.11-2.27; p value, 0.03). There was a marginally significant association between the interaction of the CC genotype and the E-DII score with higher hs-CRP level compared to the GG genotype as the reference group (β, 0.85; 95% CI, -0.15 to 1.86; p value, 0.05). There is probably positive interaction between CG, CC genotypes of cryptochrome circadian clocks 1, and E-DII score on the high-sensitivity C-reactive protein level in women with central obesity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9900074 | PMC |
http://dx.doi.org/10.7762/cnr.2023.12.1.7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!