Most kelp species are of high ecological and economic importance worldwide, but are highly susceptible to rising ocean temperatures due to their sessile lifestyle. Due to interference with reproduction, development and growth, natural kelp forests have vanished in multiple regions after extreme summer heat waves. Furthermore, increasing temperatures are likely to decrease biomass production and, thus, reduce production security of farmed kelp. Epigenetic variation, and cytosine methylation as a heritable epigenetic trait, is a rapid means of acclimation and adaptation to environmental conditions, including temperature. While the first methylome of brown macroalgae has been recently described in the kelp , its functional relevance and contribution to environmental acclimation is currently unknown. The main objective of our study was to identify the importance of the methylome in the congener kelp species for temperature acclimation. Our study is the first to compare DNA methylation in kelp between wild populations of different latitudinal origin, and the first to investigate the effect of cultivation and rearing temperature on genome-wide cytosine methylation. Origin appears to determine many traits in kelp, but it is unknown to what extent the effects of thermal acclimation may be overruled by lab-related acclimation. Our results suggest that seaweed hatchery conditions have strong effects on the methylome and, thus, putatively on the epigenetically controlled characteristics of young kelp sporophytes. However, culture origin could best explain epigenetic differences in our samples suggesting that epigenetic mechanisms contribute to local adaptation of eco-phenotypes. Our study is a first step to understand whether DNA methylation marks (via their effect on gene regulation) may be used as biological regulators to enhance production security and kelp restoration success under rising temperatures, and highlights the importance to match hatchery conditions to origin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9923482PMC
http://dx.doi.org/10.1111/eva.13382DOI Listing

Publication Analysis

Top Keywords

kelp
10
kelp species
8
production security
8
cytosine methylation
8
dna methylation
8
hatchery conditions
8
acclimation
5
differences origin
4
methylome
4
origin methylome
4

Similar Publications

Vanadium-Dependent Haloperoxidase Gene Evolution in Brown Algae: Evidence for Horizontal Gene Transfer.

Int J Mol Sci

January 2025

Key Lab of Breeding Biotechnology and Sustainable Aquaculture, Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.

Compared with green plants, brown algae are characterized by their ability to accumulate iodine, contributing to their ecological adaptability in high-iodide coastal environments. Vanadium-dependent haloperoxidase (V-HPO) is the key enzyme for iodine synthesis. Despite its significance, the evolutionary origin of V-HPO genes remains underexplored.

View Article and Find Full Text PDF

Poor ambient air quality poses a substantial global health threat. However, accurate measurement remains challenging, particularly in countries such as India where ground monitors are scarce despite high expected exposure and health burdens. This lack of precise measurements impedes understanding of changes in pollution exposure over time and across populations.

View Article and Find Full Text PDF

Kelp forests are among the most abundant and productive marine ecosystems but are under threat from climate change and other anthropogenic stressors. Although knowledge is growing about how the abundance and distribution of kelp forests are changing, much less is known about the "non-lethal" effects that global change is having on the performance and health of kelp populations in areas where they persist. Here we assessed the age distribution of two common stipitate kelp species, Laminaria setchelli and Pterygophora californica, at Wizard Islet in Barkley Sound, British Columbia, Canada, and compared these data to historical demographic data collected by De Wreede (1984) and Klinger and DeWreede (1988) from the same site between 1981 and 1983.

View Article and Find Full Text PDF

A rise in antimicrobial resistance coupled with consumer preferences towards natural preservatives has resulted in increased research towards investigating antimicrobial compounds from natural sources such as macroalgae (seaweeds), which contain antioxidant, antimicrobial, and anticancer compounds. This study investigates the antimicrobial activity of compounds produced by the Irish seaweed against and , bacterial species which are relevant for food safety. Microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), ultrasound-microwave-assisted extraction (UMAE), and conventional extraction technologies (maceration) were applied to generate extracts from , followed by their preliminary chemical composition (total phenolic content, total protein content, total soluble sugars) and antimicrobial activity (with minimum inhibitory concentration determined by broth microdilution methods), examining also the molecular weight distribution (via high performance size exclusion chromatography) and oligosaccharide fraction composition (via high-performance liquid chromatography) of the polysaccharides, as they were the predominant compounds in these extracts, aiming to elucidate structure-function relationships.

View Article and Find Full Text PDF

The optimization of bioactive compound extraction from using ultrasound-assisted extraction (UAE) via sonotrode was investigated to maximize phenolic recovery and antioxidant activity while promoting a sustainable process. Optimal conditions (40% / ethanol in water, 38 min, 36% amplitude) were selected to maximize phenolic recovery while considering environmental and energy sustainability by optimizing extraction efficiency and minimizing solvent and energy usage. HPLC-ESI-QTOF-MS analysis tentatively identified 25 phenolic compounds, including sulfated phenolic acids, phlorotannins, flavonoids, and halophenols, with some reported for the first time in , underscoring the complexity of this alga's metabolome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!