Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We describe a regularized regression model for the selection of gene-environment (G×E) interactions. The model focuses on a single environmental exposure and induces a main-effect-before-interaction hierarchical structure. We propose an efficient fitting algorithm and screening rules that can discard large numbers of irrelevant predictors with high accuracy. We present simulation results showing that the model outperforms existing joint selection methods for (G×E) interactions in terms of selection performance, scalability and speed, and provide a real data application. Our implementation is available in the gesso R package.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9928188 | PMC |
http://dx.doi.org/10.1080/10618600.2022.2039161 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!