Passive membrane permeability and an active transport process are key determinants for penetrating the blood-brain barrier. P-glycoprotein (P-gp), a well-known transporter, serves as the primary gatekeeper, having broad substrate specificity. A strategy to increase passive permeability and impair P-gp recognition is intramolecular hydrogen bonding (IMHB). is a potent brain penetrant BACE1 inhibitor with high permeability and low P-gp recognition, although slight modifications to its tail amide group significantly affect P-gp efflux. We hypothesized that the difference in the propensity to form IMHB could impact P-gp recognition. Single-bond rotation at the tail group enables both IMHB forming and unforming conformations. We developed a quantum-mechanics-based method to predict IMHB formation ratios (IMHBRs). In a given data set, IMHBRs accounted for the corresponding temperature coefficients measured in NMR experiments, correlating with P-gp efflux ratios. Furthermore, the method was applied in hNK2 receptor antagonists, demonstrating that the IMHBR could be applied to other drug targets involving IMHB.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9923834 | PMC |
http://dx.doi.org/10.1021/acsmedchemlett.2c00427 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!