Upgrading methane into methanol or other high value-added chemicals is not only beneficial to mitigate the greenhouse effect, but also provides basic raw materials for industrial production. Nowadays, most research is limited to zeolite systems, and it is a considerable challenge to extend the support to metal oxides while achieving a high yield of methanol. In this paper, we take advantage of impregnation methods to synthesise a novel Cu/MoO catalyst, which can convert methane to methanol in the gaseous phase. At 600 °C, the Cu(2)/MoO catalyst can achieve a maximum STY of 47.2 μmol (g h) with a molar ratio CH : O : HO = 5 : 1.4 : 10. Consequences of SEM, TEM, HRTEM and XRD substantiate that Cu is incorporated into the lattice of MoO to form CuMoO. And transmission infrared spectroscopy, Raman spectroscopy together with XPS characterization techniques confirm the generation of CuMoO, which is the main active site provider. This work provides a new support platform for Cu-based catalyst research in the methane-to-methanol system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9923457 | PMC |
http://dx.doi.org/10.1039/d3ra00058c | DOI Listing |
Dalton Trans
January 2025
Department of Computational Chemistry, Lund University, Chemical Centre, P. O. Box 124, SE-221 00 Lund, Sweden.
Particulate methane monooxygenase (pMMO) is the most efficient of the two groups of enzymes that can hydroxylate methane. The enzyme is membrane bound and therefore hard to study experimentally. For that reason, there is still no consensus regarding the location and nature of the active site.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA, 94305, USA.
Partial oxidation of methane (POM) is achieved by forming air-methane microbubbles in saltwater to which an alternating electric field is applied using a copper oxide foam electrode. The solubility of methane is increased by putting it in contact with water containing dissolved KCl or NaCl (3%). Being fully dispersed as microbubbles (20-40 µm in diameter), methane reacts more fully with hydroxyl radicals (OH·) at the gas-water interface.
View Article and Find Full Text PDFNat Commun
January 2025
Research Center for Solar Driven Carbon Neutrality, School of Physics Science and Technology, In-stitute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China.
Photo-oxidation of methane (CH) using hydrogen peroxide (HO) synthesized in situ from air and water under sunlight offers an attractive route for producing green methanol while storing intermittent solar energy. However, in commonly used aqueous-phase systems, photocatalysis efficiency is severely limited due to the ultralow availability of CH gas and HO intermediate at the flooded interface. Here, we report an atomically modified metal-organic framework (MOF) membrane nanoreactor that promotes direct CH photo-oxidation to methanol at the gas-solid interface in a reticular open framework.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Institute for Molecular Modeling and Simulation, Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, Vienna 1190, Austria.
In the past decade, machine-learned potentials (MLP) have demonstrated the capability to predict various QM properties learned from a set of reference QM calculations. Accordingly, hybrid QM/MM simulations can be accelerated by replacement of expensive QM calculations with efficient MLP energy predictions. At the same time, alchemical free-energy perturbations (FEP) remain unachievable at the QM level of theory.
View Article and Find Full Text PDFChem Rec
January 2025
Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, 673601, India.
Direct methane to methanol conversion is a dream reaction in industrial chemistry, which takes inspiration from the biological methanol production catalysed by methane monooxygenase enzymes (MMOs). Over the years, extensive studies have been conducted on this topic by bioengineering the MMOs, and tailoring methods to isolate the MMOs in the active form. Similarly, remarkable achievements have been noted in other methane activation strategies such as the use of heterogeneous catalysts or molecular catalysts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!