The high demand and economic relevance of cephalopods make them prone to food fraud, including related to harvest location. Therefore, there is a growing need to develop tools to unequivocally confirm their capture location. Cephalopod beaks are nonedible, making this material ideal for traceability studies as it can also be removed without a loss of commodity economic value. Within this context, common octopus (Octopus vulgaris) specimens were captured in five fishing areas along the Portuguese coast. Untargeted multi-elemental total X-ray fluorescence analysis of the octopus beaks revealed a high abundance of Ca, Cl, K, Na, S, and P, concomitant with the keratin and calcium phosphate nature of the material. We tested a suite of discrimination models on both elemental and spectral data, where the elements contributing most to discriminate capture location were typically associated with diet (As), human-related pressures (Zn, Se, and Mn), or geological features (P, S, Mn, and Zn). Among the six different chemometrics approaches used to classify individuals to their capture location according to their beaks' element concentration, classification trees attained a classification accuracy of 76.7%, whilst reducing the number of explanatory variables for sample classification and highlighting variable importance for group discrimination. However, using X-ray spectral features of the octopus beaks further improved classification accuracy, with the highest classification of 87.3% found with partial least-squares discriminant analysis. Ultimately, element and spectral analyses of nonedible structures such as octopus beaks can provide an important, complementary, and easily accessible means to support seafood provenance and traceability, whilst integrating anthropogenic and/or geological gradients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1750-3841.16492 | DOI Listing |
J Phys Chem Lett
January 2025
Department of Physics, Rutgers University, Newark 07102, New Jersey, United States.
A striking example of the need to accurately capture states of double-excitation character in molecules is seen in predicting photoinduced dynamics in small polyenes. Due to the coupling of electronic and nuclear motions, the dark 2Ag state, known to have double-excitation character, can be reached after an initial photoexcitation to the bright 1Bu state via crossings of their potential energy surfaces. However, the shapes of the surfaces are so poorly captured by most electronic structure methods, that the crossing is missed or substantially mis-located.
View Article and Find Full Text PDFAtten Percept Psychophys
January 2025
Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Van Der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
In previous studies, it was established that individuals can implicitly learn spatiotemporal regularities related to how the distribution of target locations unfolds across the time course of a single trial. However, these regularities were tied to the appearance of salient targets that are known to capture attention in a bottom-up way. The current study investigated whether the saliency of target is necessary for this type of learning to occur.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
INRAE, Genetics, Diversity and Ecophysiology of Cereals, Université Clermont Auvergne, 63000, Clermont-Ferrand, France.
The agronomical interest of hybrid wheat has long been a matter of debate. Compared to maize where hybrids have been successfully grown for decades, the mixed results obtained in wheat have been attributed at least partially to the lack of heterotic groups. The wheat genome is known to be strongly partitioned and characterized by numerous presence/absence variations and alien introgressions which have not been thoroughly considered in hybrid breeding.
View Article and Find Full Text PDFCommun Biol
January 2025
State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.
Uncoupling protein 1 (UCP1) is a crucial protein located in the mitochondrial inner membrane that mediates nonshivering thermogenesis. However, the molecular mechanisms by which enhancer-promoter chromatin interactions control Ucp1 transcriptional regulation in brown adipose tissue (BAT) are unclear. Here, we employed circularized chromosome conformation capture coupled with next-generation sequencing (4C-seq) to generate high-resolution chromatin interaction profiles of Ucp1 in interscapular brown adipose tissue (iBAT) and epididymal white adipose tissue (eWAT) and revealed marked changes in Ucp1 chromatin interaction between iBAT and eWAT.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
January 2025
Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China. Electronic address:
Eating behavior stands as a fundamental determinant of animal survival and growth, intricately regulated by an amalgamation of internal and external stimuli. Coordinated movements of facial muscles and the mandible orchestrate prey capture and food processing, propelled by the allure of taste and rewarding food properties. Conversely, satiation, pain, aversion, negative emotion or perceived threats can precipitate the cessation or avoidance of eating activities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!