Jinzhen oral liquid (JZOL) is widely used in China. However, its tissue distribution, a vital part of the efficacy substances research, has not been reported yet. This study characterized its chemical components and its prototypes and metabolites in mice, and investigated its tissue distribution in pathological and healthy mice. Several constituents were characterized, including 55 constituents in JZOL, 11 absorbed prototypes and six metabolites in plasma and tissues. The metabolic pathways were demethylation, dehydration and acetylation. A sensitive, accurate and stable quantitative method was established and applied to the tissue distribution. After administration of JZOL, these seven components were rapidly distributed to various tissues, mainly staying in the small intestine, and less distributed to lung, liver and kidney. Compared with healthy mice, the absorption of baicalin, wogonoside, rhein, glycyrrhizic acid and liquiritin apioside was reduced in influenza mice, but their elimination was slow. However, influenza infection had no obvious effect on the overall distribution of the most important components (baicalin, glycyrrhizic acid and wogonoside) in the plasma or small intestine, but obviously affected the distribution of baicalin in liver. In summary, seven components are rapidly distributed to various tissues, and influenza infection has certain influence on the tissue distribution of JZOL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bmc.5605 | DOI Listing |
BMC Pharmacol Toxicol
January 2025
Department of Pharmaceutics and Pharmaceutical Technology, Kampala International University, Western Campus, P.O. Box 71, Ishaka - Bushenyi, Uganda.
Background: Piperine, a secondary metabolite, affects the antihyperlipidemic effect of Ezetimibe (EZ). Hyperlipidemia is one of the independent risk factors for cardiovascular disorders such as atherosclerosis. Antihyperlipidemic drugs are essential for reducing cardiovascular events and patient mortality.
View Article and Find Full Text PDFFluids Barriers CNS
January 2025
Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada.
Background: Iduronate-2-sulfatase (IDS) deficiency (MPS II; Hunter syndrome) is a disorder that exhibits peripheral and CNS pathology. The blood brain barrier (BBB) prevents systemic enzyme replacement therapy (ERT) from alleviating CNS pathology. We aimed to enable brain delivery of systemic ERT by using molecular BBB-Trojans targeting endothelial transcytosis receptors.
View Article and Find Full Text PDFMol Imaging Biol
January 2025
Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Purpose: This preclinical study explored the feasibility of assessing P-glycoprotein (P-gp) function in both brain and gastrointestinal (GI) tract of rats using positron emission tomography (PET) following oral administration of [F]MC225. Different oral administration protocols were evaluated, and radioactivity uptake was compared with uptake following intravenous administration.
Procedures: Twelve male Wistar rats were divided into four groups and subjected to intravenous or oral [F]MC225 administration protocols: G (intravenous route), G (oral administration without fasting), G (oral administration with fasting), and G (oral administration with fasting following administration of the P-gp inhibitor tariquidar).
Virchows Arch
January 2025
Institute of Pathology, University Medical Center Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
Penile cancer (PeCa) is a rare disease with poor prognosis in the metastatic stage. Neither effective adjuvant nor palliative therapeutic options are available. Research efforts in this field have so far failed to establish robust predictors of survival.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Basic Sciences, Faculty of Dentistry, Universidad de Antioquia U de A, Medellín, 050010, Colombia.
The NLRP3 inflammasome, regulated by TLR4, plays a pivotal role in periodontitis by mediating inflammatory cytokine release and bone loss induced by Porphyromonas gingivalis. Periodontal disease creates a hypoxic environment, favoring anaerobic bacteria survival and exacerbating inflammation. The NLRP3 inflammasome triggers pyroptosis, a programmed cell death that amplifies inflammation and tissue damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!