Background: The use of apical views focused on the left atrium (LA) has improved the accuracy of LA volume evaluation by two-dimensional (2D) echocardiography. However, routine cardiovascular magnetic resonance (CMR) evaluation of LA volumes still uses standard 2- and 4-chamber cine images focused on the left ventricle (LV). To investigate the potential of LA-focused CMR cine images, we compared LA maximuml (LAVmax) and minimum (LAVmin) volumes, and emptying fraction (LAEF), calculated on both standard and LA-focused long-axis cine images, with LA volumes and LAEF obtained by short-axis cine stacks covering the LA. LA strain was also calculated and compared between standard and LA-focused images.

Methods: LA volumes and LAEF were obtained from 108 consecutive patients by applying the biplane area-length algorithm to both standard and LA-focused 2- and 4-chamber cine images. Manual segmentation of a short-axis cine stack covering the LA was used as the reference method. In addition, LA strain reservoir (εs), conduit (εe) and booster pump (εa) were calculated using CMR feature-tracking.

Results: Compared to the reference method, the standard approach significantly underestimated LA volumes (LAVmax: bias - 13 ml; LOA =  + 11, - 37 ml; LAVmax i: bias - 7 ml/m; LOA =  + 7, - 21 ml/m; LAVmin; bias - 10 ml, LOA: + 9, - 28 ml; LAVmin i: bias - 5 ml/m, LOA: + 5, - 16 ml/m), and overestimated LA-EF (bias 5%, LOA: + 23, - 14%). Conversely, LA volumes (LAVmax: bias 0 ml; LOA: + 10, - 10 ml; LAVmax i: bias 0 ml/m; LOA: + 5, - 6 ml/m; LAVmin: bias - 2 ml; LOA: + 7, - 10 ml; LAVmin i: bias - 1 ml/m; LOA: + 3, - 5 ml/m) and LAEF (bias 2%, LOA: + 11, - 7%) by LA-focused cine images were similar to those measured using the reference method. LA volumes by LA-focused images were obtained faster than using the reference method (1.2 vs 4.5 min, p < 0.001). LA strain (εs: bias 7%, LOA = 25, - 11%; εe: bias 4%, LOA = 15, - 8%; εa: bias 3%, LOA = 14, - 8%) was significantly higher in standard vs. LA-focused images (p < 0.001).

Conclusion: LA volumes and LAEF measured using dedicated LA-focused long-axis cine images are more accurate than using standard LV-focused cine images. Moreover, LA strain is significantly lower in LA-focused vs. standard images.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9933380PMC
http://dx.doi.org/10.1186/s12968-022-00905-wDOI Listing

Publication Analysis

Top Keywords

cine images
20
reference method
16
lavmax bias
16
lavmin bias
16
focused left
12
standard la-focused
12
bias
10
views focused
8
left atrium
8
volumes
8

Similar Publications

Background: The Fontan procedure is a surgical intervention designed for patients with single ventricle physiology, wherein the systemic venous return is redirected into the pulmonary circulation, thereby facilitating passive pulmonary blood flow without the assistance of ventricular propulsion. Consequently, long-term follow-up of individuals who have undergone the asymptomatic Fontan procedure is essential.

Objectives: The aims of this investigation were to: 1) examine the impact of flow components and kinetic energy (KE) parameters on hemodynamic disturbances in asymptomatic Fontan patients and control group; 2) Assess left ventricular diastolic dysfunction through the analysis of 4D flow parameters across different Fontan sub-groups; 3) Compare intracardiac flow parameters among Fontan sub-groups based on morphological features of the left ventricle (LV) and right ventricle (RV).

View Article and Find Full Text PDF

Purpose: To investigate image quality and agreement of derived cardiac function parameters in a novel joint image reconstruction and segmentation approach based on disentangled representation learning, enabling real-time cardiac cine imaging during free-breathing.

Methods: A multi-tasking neural network architecture, incorporating disentangled representation learning, was trained using simulated examinations based on data from a public repository along with MR scans specifically acquired for model development. An exploratory feasibility study evaluated the method on undersampled real-time acquisitions using an in-house developed spiral bSSFP pulse sequence in eight healthy participants and five patients with intermittent atrial fibrillation.

View Article and Find Full Text PDF

Computational modeling of cardiac hemodynamics including chordae tendineae, papillaries, and valves dynamics.

Comput Biol Med

January 2025

LaBS, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy. Electronic address:

In the context of dynamic image-based computational fluid dynamics (DIB-CFD) modeling of cardiac system, the role of sub-valvular apparatus (chordae tendineae and papillary muscles) and the effects of different mitral valve (MV) opening/closure dynamics, have not been systemically determined. To provide a partial filling of this gap, in this study we performed DIB-CFD numerical experiments in the left ventricle, left atrium and aortic root, with the aim of highlighting the influence on the numerical results of two specific modeling scenarios: (i) the presence of the sub-valvular apparatus, consisting of chordae tendineae and papillary muscles; (ii) different MV dynamics models accounting for different use of leaflet reconstruction from imaging. This is performed for one healthy subject and one patient with mitral valve regurgitation.

View Article and Find Full Text PDF

Atrial fibrillation (AF), impacting nearly 50 million individuals globally, is a major contributor to ischaemic strokes, predominantly originating from the left atrial appendage (LAA). Current clinical scores like CHA₂DS₂-VASc, while useful, provide limited insight into the pro-thrombotic mechanisms of Virchow's triad-blood stasis, endothelial damage, and hypercoagulability. This study leverages biophysical computational modelling to deepen our understanding of thrombogenesis in AF patients.

View Article and Find Full Text PDF

Numerous efforts have been invested in previous algorithms to expose and enhance blood vessel (BV) visibility derived from clinical coronary angiography (CAG) procedures, such as noise reduction, segmentation, and background subtraction. Yet, the visibility of the BVs and their luminal content, particularly the small ones, is still limited. We propose a novel visibility enhancement algorithm, whose main body is inspired by a line completion mechanism of the visual system, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!