This work constructs a rovibrational state-to-state model for the O + O system leveraging high-fidelity potential energy surfaces and quasi-classical trajectory calculations. The model is used to investigate internal energy transfer and nonequilibrium reactive processes in a dissociating environment using a master equation approach, whereby the kinetics of each internal rovibrational state is explicitly computed. To cope with the exponentially large number of elementary processes that characterize reactive bimolecular collisions, the internal states of the collision partner are assumed to follow a Boltzmann distribution at a prescribed internal temperature. This procedure makes the problem tractable, reducing the computational cost to a comparable scale with the O + O system. The constructed rovibrational-specific kinetic database covers the temperature range of 7500-20 000 K. The reaction rate coefficients included in the database are parameterized in the function of kinetic and internal temperatures. Analysis of the energy transfer and dissociation process in isochoric and isothermal conditions reveals that significant departure from the equilibrium Boltzmann distribution occurs during the energy transfer and dissociation phase. Comparing the population distribution of the O molecules against the O + O case demonstrates a more significant extent of nonequilibrium characterized by a more diffuse distribution whereby the vibrational strands are more clearly identifiable. This is partly due to less efficient mixing of the rovibrational states, which results in more diffuse rovibrational distributions in the quasi-steady-state distribution of O + O. A master equation analysis for the combined O + O and O + O system reveals that the O + O system governs the early stage of energy transfer, whereas the O + O system takes control of the dissociation dynamics. The findings of the present work will provide a strong physical foundation that can be exploited to construct an improved reduced-order model for oxygen chemistry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0133463 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Chinese Academy of Sciences Dalian Institute of Chemical Physics, State Key Laboratory of Catalysis and Dalian National Laboratory for Clean Energy, CHINA.
Hydroxy radical (•OH) is a prestigious oxidant that allows the cleavage of strong chemical bonds of methane but is untamed, leading to over-oxidation of methane and waste of oxidants, especially at high methane conversion. Here, we managed to buffer •OH in an aqueous solution of photo-irradiated Fe3+, where •OH almost participates in methane oxidation. Due to the interaction between Fe3+ and SO42-, the electron transfer from OH- to excited-state Fe3+ for •OH generation is retarded, while excessive •OH is consumed by generated Fe2+ to restore Fe3+.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Joint Drug Development and Innovation Centre for Neurological Disorders of Lanzhou University-China National Biotec Group-Lanzhou Biotechnology Development Co., School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China; MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, Gansu, 730000, PR China. Electronic address:
Background: Botulinum neurotoxin type A (BoNT/A) is the most potent and prevalent neurotoxin known to cause botulism, and is also widely used in medical and cosmetic applications. The detection of BoNT/A is of great significance for botulism diagnosis and drug potency determination. Currently, the mouse bioassay (MBA) has long been the gold standard method but has disadvantages of ethical concerns, long testing duration, and high costs.
View Article and Find Full Text PDFMol Cells
January 2025
Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; Institute of Systems Biology, Pusan National University, Busan 46241, Republic Korea. Electronic address:
Recent advancements in fluorescence-based biosensor technologies have enabled more precise and accurate Förster Resonance Energy Transfer (FRET) imaging within Agrobacterium-mediated plant transformation systems. However, the application of FRET imaging in plant tissues remains hindered by significant challenges, particularly the time-intensive process of generating transgenic lines and the complications arising from tissue autofluorescence. In contrast, protoplast-based FRET imaging offers a rapid and efficient platform for functional screening and analysis, making it an essential tool for plant research.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
School of Eco-Environment, Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, Hebei University, Baoding 071002, China. Electronic address:
Imidacloprid (IMI), as an emerging pollutant, is frequently detected in pesticide wastewater. Cobalt-based single-atom catalysts (Co-SACs) doped with sulfur atoms can serve as an efficient strategy to activate peroxymonosulfate (PMS) and degrade organic pollutants. The paper employed density functional theory and computational toxicology to deeply explore the mechanism and ecotoxicity of IMI when S atoms were introduced into Co-SACs for PMS activation.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China. Electronic address:
Plastic pollution has become a common phenomenon. The process of plastic degradation is accompanied by the release of microplastics and plasticizers. However, the coexistence of microplastics and plasticizers on the transfer of antibiotic resistance genes (ARGs) has not been reported until now.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!