Augmented reality in liver surgery.

J Visc Surg

Department of Surgery, AP-HP hôpital Paul-Brousse, Hepato-Biliary Center, 12, avenue Paul-Vaillant Couturier, 94804 Villejuif cedex, France; Augmented Operating Room Innovation Chair (BOPA), France; Inria « Mimesis », Strasbourg, France; DHU Hepatinov, 94800 Villejuif, France; Inserm, Paris-Saclay University, UMRS 1193, Pathogenesis and treatment of liver diseases; FHU Hepatinov, 94800 Villejuif, France. Electronic address:

Published: April 2023

Introduction: During an operation, augmented reality (AR) enables surgeons to enrich their vision of the operating field by means of digital imagery, particularly as regards tumors and anatomical structures. While in some specialties, this type of technology is routinely ustilized, in liver surgery due to the complexity of modeling organ deformities in real time, its applications remain limited. At present, numerous teams are attempting to find a solution applicable to current practice, the objective being to overcome difficulties of intraoperative navigation in an opaque organ.

Objective: To identify, itemize and analyze series reporting AR techniques tested in liver surgery, the objectives being to establish a state of the art and to provide indications of perspectives for the future.

Methods: In compliance with the PRISMA guidelines and availing ourselves of the PubMed, Embase and Cochrane databases, we identified English-language articles published between January 2020 and January 2022 corresponding to the following keywords: augmented reality, hepatic surgery, liver and hepatectomy.

Results: Initially, 102 titles, studies and summaries were preselected. Twenty-eight corresponding to the inclusion criteria were included, reporting on 183patients operated with the help of AR by laparotomy (n=31) or laparoscopy (n=152). Several techniques of acquisition and visualization were reported. Anatomical precision was the main assessment criterion in 19 articles, with values ranging from 3mm to 14mm, followed by time of acquisition and clinical feasibility.

Conclusion: While several AR technologies are presently being developed, due to insufficient anatomical precision their clinical applications have remained limited. That much said, numerous teams are currently working toward their optimization, and it is highly likely that in the short term, the application of AR in liver surgery will have become more frequent and effective. As for its clinical impact, notably in oncology, it remains to be assessed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jviscsurg.2023.01.008DOI Listing

Publication Analysis

Top Keywords

liver surgery
16
augmented reality
12
limited numerous
8
numerous teams
8
anatomical precision
8
liver
5
surgery
5
reality liver
4
surgery introduction
4
introduction operation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!