Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Differential diagnosis of enlarged lymph nodes (ELNs) is essential for the treatment of related patients. Though multi-modal ultrasound including B-mode, Doppler ultrasound, elastography and contrast-enhanced ultrasound (CEUS) can enhance diagnostic performance for ELNs, the scenario of having only single or dual modal data is often encountered. In this study, an artificially intelligent diagnosis model based on the learning using privileged information was proposed to aid in differential diagnosis of ELNs in the case of single or dual modal images. In our model, B-mode, or combined with another modality, was used as the standard information (SI) and other modalities were used as the privileged information (PI). The model was constructed through the combination of the SI and PI in the training stage. By learning from the training samples, a random vector functional link network with privileged information (RVFL+) was obtained, which was used to classify the testing samples of solely the SI. Results showed that the accuracy, precision and Youden's index of the RVFL+ model, using B-mode with elastography as the SI and CEUS as the PI, reached 78.4%, 92.4% and 54.9%, increased by 14.0%, 8.4% and 24.5% compared with the model using B-mode as the SI without the PI. The method based on the LUPI can improve the diagnostic performance for ELNs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.medengphy.2022.103939 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!