Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Dopamine plays a central role in the regulation of psychomotor functions in the brain. Furthermore, the dopaminergic system is involved in the ictogenesis in human patients and animal models of epilepsy. Dopamine and cAMP-regulated phosphoprotein, 32 kDa (DARPP-32) plays an important role in the regulation of interactions between dopamine and glutamate receptors in neurons. Indeed, SKF 83822 (a specific D1 receptor agonist) facilitates DARPP-32-mediated protein phosphatase 1 (PP1) inhibition leading to the increase in phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR), which potentiates channel activities and currents and thereby generates seizure activity. In the present study, we found that pyridoxal-5'-phosphate phosphatase/chronophin (PLPP/CIN), a selective phosphatase for serine (S) residues, attenuated seizure susceptibility in response to SKF 83822 by dephosphorylating DARPP-32 S97 site. Similarly, inhibition of DARPP-32 S97 phosphorylation by 2-[4,5,6,7-Tetrabromo-2-(dimethylamino)-1H-benzo[d]imidazole-1-yl]acetic acid (TMCB; a selective casein kinase 2 inhibitor) attenuated SKF 83822-induced seizure activity. These inhibitory effects of PLPP/CIN and TMCB were relevant to the regulations of DARPP-32-PP1-AMPAR signaling pathway. Therefore, our findings suggest that PLPP/CIN may be a modulator in dopaminergic neurotransmission as well as glutamatergic systems, and that the PLPP/CIN-mediated DARPP-32 regulation may be one of the potential therapeutic targets for medication of seizure or epilepsy induced by D1 receptor hyperactivation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropharm.2023.109462 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!