Overlooked impacts of natural organic matter conversion in a Fe(II)-induced peroxymonosulfate activation system for river water remediation.

Sci Total Environ

School of Environmental Science and Engineering/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300350, China; High Tech Inst Beijing, Beijing 100085, China. Electronic address:

Published: May 2023

AI Article Synopsis

  • The study explores the challenges posed by natural organic matter (NOM) in the peroxymonosulfate (PMS) process for degrading pollutants like sulfamethoxazole (SMX) from river water.
  • Using a Fe(II)-induced RW/PMS catalytic system, researchers found that NOM transformations can hinder SMX degradation, with certain NOM structures significantly inhibiting the process.
  • The research emphasizes the need to manage NOM molecules for better pollutant removal, offering insights that could enhance treatment efficiency for emerging contaminants in aquatic environments.

Article Abstract

The peroxymonosulfate (PMS) process may be hindered severely due to natural organic matter (NOM) conversion in the treatment of emerging pollutants from river water, becoming a critical engineering and technical issue. In this study, a Fe(II)-induced river water (RW)/PMS catalytic system was constructed for investigating molecular transformation of NOM and related influence mechanism to sulfamethoxazole (SMX) degradation. Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) analysis indicated that NOM molecules containing no more than one heteroatom in river may be attacked by hydroxyl radicals (OH) and then polymerized, converting into molecules with two or three heteroatoms during PMS oxidation. Based on the correlation analysis, CHONP-NOM, CHOSP-NOM and CHONSP-NOM showed a significant inhibition against SMX degradation, while CHONS-NOM exhibited a moderate inhibitory effect. Besides, more condensed aromatic structures, carbohydrates and tannins were generated via reactive species (OH and sulfate radicals (SO)) oxidation, radical addition and polymerization reactions. Notably, condensed aromatic structures, carbohydrates and tannins presented weak, modest and strong inhibition to SMX degradation, respectively. Based on the current results, the inhibition of target pollutants degradation would be mitigated via regulation of NOM molecules in a Fe(II)-induced PMS activation system, providing valuable information to reduce NOM impact. In addition, this study paves the way to achieve efficient removal of emerging pollutants from river water.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.162217DOI Listing

Publication Analysis

Top Keywords

river water
16
smx degradation
12
natural organic
8
organic matter
8
activation system
8
emerging pollutants
8
pollutants river
8
nom molecules
8
inhibition smx
8
condensed aromatic
8

Similar Publications

The hydrologic benefits of catchment-scale implementation of stormwater control measures (SCMs) in mitigating the adverse effects of urbanization are well established. Nevertheless, recent studies indicate that the Unified Stormwater Sizing Criteria (USSC) regulations, mandating the combined use of distributed and storage stormwater controls, do not protect channel stability, despite their effectiveness in reducing runoff from impervious surfaces. The USSC are the basis of SCM design in 11 U.

View Article and Find Full Text PDF

Microbial coalescence plays a crucial role in shaping aquatic ecosystems by facilitating the merging of neighboring microbial communities, thereby influencing ecosystem structure. Although this phenomenon is commonly observed in natural environments, comprehensive quantitative comparative studies on different lifestyle bacteria involved in this process are still lacking. The study focuses on 16S rRNA Amplicon Sequence Variants (ASVs) at the Jinsha River hydropower stations (Wudongde [WDD], Baihetan [BHT], Xiluodu [XLD], Xiangjiaba [XJB]), specifically examining free-living (FL) and particle-attached (PA) bacteria.

View Article and Find Full Text PDF

Impacts of climate change on storm event-based flow regime and channel stability of urban headwater streams.

J Environ Manage

January 2025

Tetra Tech, Inc., P.O. Box 14409, Research Triangle Park, NC, 27709, United States. Electronic address:

Due to the recent improved availability of global and regional climate change (CC) models and associated data, the projected impact of CC on urban stormwater management is well documented. However, most studies are based on simplified design storm analysis and unit-area runoff models; evaluations of the long-term, continuous hydrologic response of extensive stormwater control measures (SCM) implementation under future CC scenarios are limited. Moreover, channel stability in response to CC is seldom evaluated due to the input data required to develop a long-term, continuous sediment transport model.

View Article and Find Full Text PDF

Spatial occurrence of emerging contaminants in rivers and wastewater. Analysis of environmental and human risks.

Environ Toxicol Chem

January 2025

Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina.

This study assesses the occurrence of emerging contaminants (ECs) from agricultural and livestock production activities along the Salado River (Santa Fe province, Argentina). Of the 23 ECs studied, 8 were detected and quantified in river and wastewater samples, including ciprofloxacin, enrofloxacin, chlorpyrifos-methyl, albendazole, fenbendazole, levamisole, diazepam, and thiamethoxam. In river samples, the highest concentrations corresponded to ciprofloxacin, chlorpyrifos-methyl, and enrofloxacin.

View Article and Find Full Text PDF

Floodplain forests drive fruit-eating fish diversity at the Amazon Basin-scale.

Proc Natl Acad Sci U S A

January 2025

Centre de Recherche sur la Biodiversité et l'Environnement, Université de Toulouse, Institut de Recherche pour le Développement, Institut National Polytechnique de Toulouse, Université Toulouse 3 - Paul Sabatier, Toulouse F-31062, France.

Unlike most rivers globally, nearly all lowland Amazonian rivers have unregulated flow, supporting seasonally flooded floodplain forests. Floodplain forests harbor a unique tree species assemblage adapted to flooding and specialized fauna, including fruit-eating fish that migrate seasonally into floodplains, favoring expansive floodplain areas. Frugivorous fish are forest-dependent fauna critical to forest regeneration via seed dispersal and support commercial and artisanal fisheries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!