Otolin-1, an otolith- and otoconia-related protein, controls calcium carbonate bioinspired mineralization.

Biochim Biophys Acta Gen Subj

Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wroclaw, Poland. Electronic address:

Published: May 2023

Background: Otoliths and otoconia are calcium carbonate biomineral structures that form in the inner ear of fish and humans, respectively. The formation of these structures is tightly linked to the formation of an organic matrix framework with otolin-1, a short collagen-like protein from the C1q family as one of its major constituents.

Methods: In this study, we examined the activity of recombinant otolin-1 originating from Danio rerio and Homo sapiens on calcium carbonate bioinspired mineralization with slow-diffusion method and performed crystals characterization with scanning electron microscopy, two-photon excited fluorescence microscopy, confocal laser scanning microscopy and micro-Raman spectroscopy.

Results: We show that both proteins are embedded in the core of CaCO crystals that form through the slow-diffusion mineralization method. Both of them influence the morphology but do not change the polymorphic mineral phase. D.rerio otolin-1 also closely adheres to the crystal surface.

General Significance: The results suggest, that otolin-1 is not a passive scaffold, but is directly involved in regulating the morphology of the resulting calcium carbonate biocrystals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2023.130327DOI Listing

Publication Analysis

Top Keywords

calcium carbonate
16
carbonate bioinspired
8
bioinspired mineralization
8
otolin-1
5
otolin-1 otolith-
4
otolith- otoconia-related
4
otoconia-related protein
4
protein controls
4
calcium
4
controls calcium
4

Similar Publications

Sandstone-hosted uranium is mined in the Sahel regions of Niger. The Teloua aquifer is located beneath the ore-processing facilities of one such former mine, COMINAK. The pores of the sandstone bedrock are partially filled by tosudite, a clay with sorption capacities.

View Article and Find Full Text PDF

Recently biocementation has got attention of many researchers worldwide as one of the most potent techniques for sustainable construction. Several studies have been carried out worldwide on biocementation by urea hydrolysis. Biocementation by bacterially induced calcium carbonate precipitation by different bacterial species has been among the most widely researched areas in this field.

View Article and Find Full Text PDF

A c-type lectin with dual function of immunology and mineralization from the freshwater oyster ( Lea).

Front Immunol

January 2025

Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.

Background: Shell and pearl formation in bivalves is a sophisticated biomineralization process that encompasses immunological and mineralization aspects, particularly during shell repair and the initial stages of pearl cultivation when a nucleus is inserted. Here, we describe a novel C-type lectin, HcLec1, isolated and characterized from the freshwater pearl mussel Lea.

Methods: Immune challenge, RNA interference (RNAi) experiments, ELISA, and antibacterial assays were employed to investigate the role of HcLec1 in innate immunity.

View Article and Find Full Text PDF

Bacterial activation level determines Cd(II) immobilization efficiency by calcium-phosphate minerals in soil.

J Hazard Mater

January 2025

National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China. Electronic address:

Soil mineral properties significantly influence the mobility of Cd(II) within the soil matrix. However, the limited understanding of how microbial metabolism affects mineral structure at the microscale poses challenges for in situ remediation. Here, we designed a model calcium-phosphate system in a urea-rich environment to explore the impact of different microbial activation levels on Cd(II) fixation at mineral interfaces.

View Article and Find Full Text PDF

The antiscale magnetic treatment (ASMT) claims to utilize magnetic field to combat scaling. However, its underlying mechanism, effectiveness, and reliability remain controversial. To address these contentious aspects, we analyze the influence of a magnetic field on the different stages of typical scale formation, using [Formula: see text] as a model scale.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!