Cortical mechanisms of sensory trick in cervical dystonia.

Neuroimage Clin

Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome 00185, Italy; IRCCS Neuromed, Via Atinense 18, Pozzilli, IS 86077, Italy.

Published: March 2023

Patients with cervical dystonia (CD) often show an improvement in dystonic posture after sensory trick (ST), though the mechanisms underlying ST remain unclear. In this study, we aimed to investigate the effects of ST on cortical activity in patients with CD and to explore the contribution of motor and sensory components to ST mechanisms. To this purpose, we studied 15 CD patients with clinically effective ST, 17 without ST, and 14 healthy controls (HCs) who mimicked the ST. We used electroencephalographic (EEG) recordings and electromyography (EMG) data from bilateral sternocleidomastoid (SCM) muscles. We compared ST-related EEG spectral changes from sensorimotor and posterior parietal areas and EMG power changes between groups. To better understand the contribution of motor and sensory components to ST, we tested EEG and EMG correlates of three different conditions mimicking ST, the first without skin touch ("no touch" condition), the second without voluntary movements ("passive" condition), and finally without arm movements ("examiner touch" condition). Results showed ST-related alpha desynchronization in the sensorimotor cortex and theta desynchronization in the sensorimotor and posterior parietal cortex. Both spectral changes were more significant during maneuver execution in CD patients with ST than in CD patients without ST and HCs who mimicked the ST. Differently, the "no touch", "passive", or "examiner touch" conditions did not show significant differences in EEG or EMG changes determined by ST execution/mimicking between CD patients with or without ST. A higher desynchronization within alpha and theta bands in the sensorimotor and posterior parietal areas correlated with a more significant activity decrease in the contralateral SCM muscle, Findings from this study suggest that ST-related changes in the activity of sensorimotor and posterior parietal areas may restore dystonic posture and that both motor and sensory components contribute to the ST effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9950946PMC
http://dx.doi.org/10.1016/j.nicl.2023.103348DOI Listing

Publication Analysis

Top Keywords

sensorimotor posterior
16
posterior parietal
16
motor sensory
12
sensory components
12
parietal areas
12
sensory trick
8
cervical dystonia
8
dystonic posture
8
contribution motor
8
hcs mimicked
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!