Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The application of two computer vision systems (CVS) was evaluated to predict primal and retail cut composition in youthful beef carcasses. Left carcass sides from a total of 634 animals were broken down into primal cuts, scanned using dual-energy x-ray absorptiometry for the prediction of tissue composition and fabricated into retail cuts. Cold carcass camera (CCC) images led to higher R values than hot carcass camera (HCC) images. The CVS coefficients of prediction for the primal cut weights ranged from 0.61 to 0.97. For the primal cut tissue composition predictions, R values ranged from 0.09 for Brisket HCC bone prediction to 0.82 for Chuck CCC fat prediction. Retail cut weight estimations had similar R values, ranging from 0.10 for IMPS 112 (Ribeye roll-denuded ribeye) to 0.99 for IMPS 113C (semi-boneless chuck) both using CCC. The results suggest the feasibility of CVS technologies to predict beef primal and retail cuts weights together with tissue composition, and yield percentages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.meatsci.2023.109120 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!