Graphite Flows in the U.S.: Insights into a Key Ingredient of Energy Transition.

Environ Sci Technol

Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.

Published: February 2023

Demand for graphite will grow with expanding use of lithium-ion batteries in the United States. Much graphite is imported, raising supply chain risks. It is therefore imperative to characterize graphite's sources and sinks. Accordingly, we present the first material flow analysis for natural and synthetic graphite in the U.S. The analysis (for 2018) begins with processed graphite trade and includes graphite production, graphite product trade, manufacturing of end products, end product use, and waste management. It considers 11 end-use applications for graphite, two waste management stages, and three recycling pathways. In 2018, 354 thousand tonnes (kt) of processed graphite were consumed in the U.S., including 60 kt natural graphite and 294 kt synthetic graphite. 145 kt of graphite were traded. Refractories and foundries consumed 56% of natural graphite; 42% of synthetic graphite went into making graphite electrodes. Batteries accounted for 10 and 5% of natural and synthetic graphite consumption, respectively; 78% of total graphite used dissipated into the environment; 22% reached the waste disposal stage of which 71% was landfilled and 29% was recycled; and 59 kt of graphite accumulated in in-use stocks. Recycling more graphite and producing graphite from lignin would favorably influence today's supply chain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9979652PMC
http://dx.doi.org/10.1021/acs.est.2c08655DOI Listing

Publication Analysis

Top Keywords

graphite
20
synthetic graphite
16
supply chain
8
natural synthetic
8
processed graphite
8
waste management
8
natural graphite
8
graphite flows
4
flows insights
4
insights key
4

Similar Publications

Rational Electrolyte Design for Elevated-Temperature and Thermally Stable Lithium-Ion Batteries with Nickel-Rich Cathodes.

ACS Appl Mater Interfaces

January 2025

Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.

As the energy density of lithium-ion batteries (LIBs) increases, the shortened cycle life and the increased safety hazards of LIBs are drawing increasing concerns. To address such challenges, a series of localized high-concentration electrolytes (LHCEs) based on a solvating-solvent mixture of tetramethylene sulfone and trimethyl phosphate and a high flash-point diluent 1H,1H,5H-octafluoropentyl 1,1,2,2-tetrafluoroethyl ether were designed. The LHCEs exhibited nonflammability and greatly suppressed heat release at elevated temperatures, which would potentially improve the safety performance of the LIBs.

View Article and Find Full Text PDF

Morphology regulation and element doping are effective means to improving the photocatalytic performance of graphite-phase carbon nitride (g-CN). In this article, using melamine and zinc chloride as raw materials, a novel kind of Zn/Cl-doped hollow microtubular g-CN (Zn-HT-CN) by a hydrothermal method was developed. The structure and morphology of Zn-HT-CN and reference samples were characterized by X-ray diffraction patterns (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), etc.

View Article and Find Full Text PDF

Oxygen electrocatalysis plays a pivotal role in energy conversion and storage technologies. The precise identification of active sites for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is crucial for developing an efficient bifunctional electrocatalyst. However, this remains a challenging endeavor.

View Article and Find Full Text PDF

Development of a model for detection and analysis of inclusions in tomographic images of iron castings using decision trees.

Sci Rep

January 2025

Department of Applied Computer Science and Modelling Department, Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Czarnowiejska 66, 30-054, Krakow, Poland.

CT images of castings made of ductile iron were analyzed in the paper. On these images, objects can be identified that can be considered as graphite precipitates or indicate the presence of a defect in the casting. Research conducted in this area is described, based on experimental data that allows to determine whether the indicated components present in the casting are graphite precipitation.

View Article and Find Full Text PDF

Microwave synthesis of molybdenum disulfide quantum dots and the application in bilirubin sensing.

Methods Appl Fluoresc

January 2025

Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, Liaoning Province, China, Shenyang, 110004, CHINA.

Molybdenum disulfide quantum dots (MoS2 QDs) is a new type of graphite like nanomaterial, which exhibited well chemical stability, unique fluorescence characteristics, and excellent biocompatibility. The conventional hydrothermal synthesis of MoS2 generally requires a long-term reaction at high temperature and high pressure. Herein, we have developed a simple and fast MoS2 QDs synthesis scheme using microwave heating, and further modified the surface of MoS2 QDs using 3-aminophenylboronic acid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!