A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optically modulated ionic conductivity in a hydrogel for emulating synaptic functions. | LitMetric

Optically modulated ionic conductivity in a hydrogel for emulating synaptic functions.

Sci Adv

Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, China.

Published: February 2023

Ion-conductive hydrogels, with ions as signal carriers, have become promising candidates to construct functional ionotronics for sensing, actuating, and robotics engineering. However, rational modulation of ionic migration to mimic biological information processing, including learning and memory, remains challenging to be realized in hydrogel materials. Here, we develop a hybrid hydrogel with optically modulated ionic conductivity to emulate the functions of a biological synapse. Through a responsive supramolecular approach, optical stimuli can trigger the release of mobile ions for tuning the conductivity of the hydrogel, which is analogous to the modulation of synaptic plasticity. As a proof of concept, this hydrogel can be used as an information processing unit to perceive different optical stimuli and regulate the grasping motion of a robotic hand, performing logical motion feedback with "learning-experience" function. Our ionic hydrogel provides a valuable strategy toward developing bioinspired ionotronic systems and pushes forward the functional applications of hydrogel materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9931204PMC
http://dx.doi.org/10.1126/sciadv.add6950DOI Listing

Publication Analysis

Top Keywords

optically modulated
8
modulated ionic
8
ionic conductivity
8
conductivity hydrogel
8
hydrogel materials
8
optical stimuli
8
hydrogel
7
ionic
4
hydrogel emulating
4
emulating synaptic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!