Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We present a high-performance laser frequency stabilization method using modulation transfer spectroscopy (MTS) on the rubidium D transition line. A substantial improvement of the laser frequency stability was achieved by searching for the optimal diameter and intensity settings of the probe and pump beam. The frequency instability measured from the beat frequency of two locked external cavity diode lasers (ECDLs) reached a short-term stability of 4.5×10/ and did not exceed 2 × 10 until 10 s, which is the best performance reported thus far with a D transition. The long-term stability is limited by the offset fluctuations of the baseline induced by the residual amplitude modulation (RAM), which can be further improved by reducing the current temperature variation of about 0.2 K by means of temperature stabilization or through a further reduction of the RAM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.480178 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!