A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Laboratory investigation on the retention performance of a soil-bentonite mixture used as an engineered barrier: insight into the effects of ionic strength and associated heavy metal ions. | LitMetric

Soil-bentonite (S-B) materials are promising backfill materials for use as engineered barriers in heavy metal-contaminated sites. The effects of contaminant exposure on the retention performance of the S-B barrier remain unrevealed. In this study, based on the pollution status of an abandoned ferroalloy factory located in southern China, the retention performance of the S-B mixture toward Cr(VI) and Zn(II) was studied through adsorption and diffusion experiments sequentially; the separate effect of ionic strength (binary solution) and the combined effect of ionic strength and associated heavy metal ion (ternary solution) were discussed. In NaCl-Cr(VI)/Zn(II) binary solutions, the adsorption of Zn(II) onto the S-B mixture is larger than that of Cr(VI). K, Q, and ɛ (accessible porosity) of Cr(VI) increase through increasing ionic strength, while Zn(II) shows the opposite trend; D (effective diffusion coefficient) values for both Cr(VI) and Zn(II) increased with increasing ionic strength and follow a sequence of Cr(VI) > Zn(II), indicating a better retention performance of the S-B mixture to Zn(II). For a given ionic strength, the adsorption of Zn(II) was larger than that of Cr(VI), which can be attributed to the retention specificity of the S-B mixture to anion and cation. In Cr(VI)-Zn(II)-NaCl ternary solutions, the adsorptions of Cr(VI) and Zn(II) are enhanced in varying degrees when compared with their binary solution, which probably could be attributed to the ion bridge role of Cr(VI)/Zn(II) to connect each other that relatively increased the adsorption capacity of S-B material. This work will contribute to an in-depth understanding of the retention performance of the S-B mixture in complicated chemical environments and facilitate the selection of future remediation strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-25780-5DOI Listing

Publication Analysis

Top Keywords

ionic strength
24
retention performance
20
s-b mixture
20
performance s-b
16
crvi znii
12
strength associated
8
associated heavy
8
heavy metal
8
s-b
8
binary solution
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!