A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of the addition of fatty acid from soybean oil sludge in recycled asphalt mixtures. | LitMetric

Recycling agents provide better additions of reclaimed asphalt pavement (RAP) in the production of new asphalt mixtures. Alternative and residual materials that have the potential as asphalt binder viscosity reducers have gained visibility in the field of paving due to the perspective of circular economy in recycled mixtures. Soybean oil sludge fatty acid is a material produced from soybean oil sludge, a waste generated in the soybean oil refining step. Thus, this paper investigated the physical, chemical, and rheological effects of the asphalt binder PG 64-XX modified by the fatty acid of soybean oil sludge in the contents of 6% and 7% by weight of the binder. The modified binder samples were submitted to penetration tests, softening point, rotational viscosity, performance grade (PG), before and after short-term aging (RTFO), and multiple stress creep and recovery (MSCR). A control asphalt mixture and recycled asphalt mixtures produced with 40% RAP and fatty acid-modified binders were subjected to tensile strength, induced moisture damage, resilient modulus, and fatigue life. A Student's t statistical test verified the significance of the data, as well as the estimation of production costs of these asphalt mixtures. The use of the fatty acid significantly reduced the stiffness and viscosity of the control asphalt binder, decreasing the mixing temperatures at 14 °C and 17 °C to 6% and 7%, respectively. Using higher fatty acid contents from soybean oil sludge significantly improved the performance of recycled mixtures in tensile strength, moisture damage, and fatigue life. The production cost of recycled asphalt mixtures was lower than that of the control mixture.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-25808-wDOI Listing

Publication Analysis

Top Keywords

soybean oil
24
fatty acid
20
oil sludge
20
asphalt mixtures
20
recycled asphalt
12
asphalt binder
12
asphalt
10
acid soybean
8
recycled mixtures
8
control asphalt
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!