Imidacloprid is an insecticide that protects against insects in the agriculture, animal, and poultry production sectors. Since the accumulation of imidacloprid induces adverse impacts on general health status and quality of the food chain, this study tested the impacts on broilers. Besides, selenium nanoparticles were fed to birds to relieve the negative impacts on growth performance and health status. Birds (1-day age, initial weight 46.05 ± 1.0 g) divided into four groups (triplicates) where 15 chicks of each replicate (45 for each group). The first group (control) was fed the basal diet without either selenium or imidacloprid toxicity. The second group was fed selenium nano form at 3 mg/kg. The third group was fed selenium and exposed to imidacloprid at 1/10 LT (3 mg/kg body weight). The fourth group was fed selenium nano form (3 mg/kg) and exposed to imidacloprid at 1/10 LT (3 mg/kg body weight). All groups were kept under the same conditions for 35 days. The final weight and weight gain of birds fed selenium nano form showed marked improvement compared to the imidacloprid-exposed group, while the feed intake and feed conversion ratio markedly reduced. The red blood cells showed higher values in birds fed selenium nano than the control and those exposed to imidacloprid. Interestingly, the hemoglobulin and hematocrit increased in birds fed selenium nano form with or without imidacloprid exposure. Furthermore, the white blood cells increased in birds fed selenium nano form with or without imidacloprid exposure. The total protein, albumin, and globulin were higher in birds fed selenium nanoparticles than those exposed to imidacloprid with or without selenium feeding. Birds in the control and imidacloprid groups had higher aspartate aminotransferase (AST), alanine aminotransferase (ALT), and malondialdehyde levels than the remaining groups. Accordingly, dietary selenium nanoparticles are suggested in broiler feed to cope with the adverse effects of imidacloprid toxicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10509070 | PMC |
http://dx.doi.org/10.1007/s12011-023-03592-5 | DOI Listing |
Nutrients
January 2025
Department of Food & Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea.
Background/objectives: The pathogenesis of metabolic dysfunction-associated steatohepatitis (MASH) is closely associated with increased oxidative stress and lipid peroxidation. Coenzyme Q (CoQ) and selenium (Se) are well-established antioxidants with protective effects against oxidative damage. This study aimed to investigate the effects of CoQ and Se in ameliorating MASH induced by a methionine choline-deficient (MCD) diet in mice.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413 115, India.
Fish face health hazards due to high-temperature (T) stress and the toxicity associated with nickel (Ni), both of which can occur in aquatic ecosystems. The accumulation of nickel in fish may pose risks to human health when contaminated fish are consumed. Consequently, the goal of this study was to clarify how selenium nanoparticles (Se-NPs) help Pangasianodon hypophthalmus by reducing the effects of nickel and high-temperature stress.
View Article and Find Full Text PDFJ Poult Sci
January 2025
Universidad Autónoma de Nuevo León, Facultad de Medicina Veterinaria y Zootecnia, Francisco I, Madero S/N, Hacienda El Canadá, CP 66050, Gral. Escobedo, NL, México.
This study evaluated the impact of replacing inorganic mineral sources of Cu, Zn, and Se with chelated organic minerals (OM) on performance, nutrient and mineral utilization rates, and intestinal morphometry in growing Japanese quails (). A total of 150 nine-day-old quails were randomly assigned to receive one of the following diets over 4 weeks: CTRL (100% inorganic minerals), OM33 (replacement of 33% inorganic minerals), OM67 (replacement of 67% inorganic minerals), and OM100 (100% organic minerals). Quails fed the OM67 diet exhibited higher ( < 0.
View Article and Find Full Text PDFBiology (Basel)
November 2024
Faculty of Agronomy and Animal Science, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Boa Esperança, Cuiabá 78060-900, MT, Brazil.
The present study aimed to evaluate the physiological responses to transport stress in juvenile tambaqui () fed a diet supplemented with hydroxy-selenomethionine (OH-SeMet; Selisseo, Adisseo) and determine through stress biomarkers whether selenium supplementation could reduce the impact of transport stress on tambaqui resilience. Juvenile fish (15.71 ± 1.
View Article and Find Full Text PDFJ Fish Biol
January 2025
Department of Computational Biology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
This study examined the effect of dietary selenium (Se) fortification on growth efficiency, antioxidant status, and liver gene expression in juvenile pangasius catfish. Sodium selenite was incorporated into a basal diet at incremental levels of 0-2.0 mg Se/kg.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!