Peptide antibiotics have gathered attention given the urgent need to discover antimicrobials with new mechanisms of action. Their extended role as immunomodulators makes them interesting candidates for the development of compounds with dual mode of action. The objective of this study was to test the anti-inflammatory capacity of a recently reported chimeric peptidomimetic antibiotic (CPA) composed of polymyxin B nonapeptide (PMBN) and a macrocyclic β-hairpin motif (MHM). We investigated the potential of CPA to inhibit lipopolysaccharide (LPS)-induced activation of RAW264.7 macrophages. In addition, we elucidated which structural motif was responsible for this activity by testing CPA, its building blocks, and their parent compounds separately. CPA showed excellent LPS neutralizing activity for both smooth and rough LPSs. At nanomolar concentrations, CPA completely inhibited LPS-induced nitric oxide, TNF-α, and IL-10 secretion. Murepavadin, MHM, and PMBN were incapable of neutralizing LPS in this assay, while PMB was less active compared to CPA. Isothermal titration calorimetry showed strong binding between the CPA and LPS with similar binding characteristics also found for the other compounds, indicating that binding does not necessarily correlate with neutralization of LPS. Finally, we showed that CPA-killed bacteria caused significantly less macrophage activation than bacteria killed with gentamicin, heat, or any of the other compounds. This indicates that the combined killing activity and LPS neutralization of CPA can prevent unwanted inflammation, which could be a major advantage over conventional antibiotics. Our data suggests that immunomodulatory activity can further strengthen the therapeutic potential of peptide antibiotics and should be included in the characterization of novel compounds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10012172 | PMC |
http://dx.doi.org/10.1021/acsinfecdis.2c00518 | DOI Listing |
ACS Med Chem Lett
February 2024
Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy.
We have applied a proteolysis targeting chimera (PROTAC) technology to obtain a peptidomimetic molecule able to trigger the degradation of SARS-CoV-2 3-chymotrypsin-like protease (3CL). The PROTAC molecule was designed by conjugating a GC-376 based dipeptidyl 3CL ligand to a pomalidomide moiety through a piperazine-piperidine linker. NMR and crystallographic data complemented with enzymatic and cellular studies showed that (i) the dipeptidyl moiety of PROTAC binds to the active site of the dimeric state of SARS-CoV-2 3CL forming a reversible covalent bond with the sulfur atom of catalytic Cys145, (ii) the linker and the pomalidomide cereblon-ligand of PROTAC protrude from the protein, displaying a high degree of flexibility and no interactions with other regions of the protein, and (iii) PROTAC reduces the protein levels of SARS-CoV-2 3CL in cultured cells.
View Article and Find Full Text PDFProtein J
December 2023
Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, 157011, Mudanjiang, PR China.
Excessive production of transforming growth factor β1 (TGF-β1) in activated hepatic stellate cells (aHSCs) promotes liver fibrosis by activating the TGF-β1/Smad signaling pathway. Thus, specifically inhibiting the pro-fibrotic activity of TGF-β1 in aHSCs is an ideal strategy for treating liver fibrosis. Overexpression of platelet-derived growth factor β receptor (PDGFβR) has been demonstrated on the surface of aHSCs relative to normal cells in liver fibrosis.
View Article and Find Full Text PDFACS Infect Dis
March 2023
Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Immunology, Utrecht University, 3584 CL Utrecht, The Netherlands.
Peptide antibiotics have gathered attention given the urgent need to discover antimicrobials with new mechanisms of action. Their extended role as immunomodulators makes them interesting candidates for the development of compounds with dual mode of action. The objective of this study was to test the anti-inflammatory capacity of a recently reported chimeric peptidomimetic antibiotic (CPA) composed of polymyxin B nonapeptide (PMBN) and a macrocyclic β-hairpin motif (MHM).
View Article and Find Full Text PDFEur J Med Chem
January 2023
Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea; Department of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, South Korea. Electronic address:
Inhibitors of apoptosis proteins (IAPs), defined by the presence of baculovirus IAP repeat (BIR) protein domain, are critical regulators of cell survival and cell death processes. Cellular IAP 1/2 (cIAP1/2) and X-linked IAPs (XIAPs) regulate the innate immune signaling pathway through their E3 ubiquitin ligase activity. Peptidomimetics or small-molecule IAP antagonists have been developed to treat various diseases, such as cancer, infection, and inflammation.
View Article and Find Full Text PDFTheranostics
November 2022
Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
Scarce tumor mutation burden and neoantigens create tremendous obstacles for an effective immunotherapy of colorectal cancer (CRC). Oncolytic peptides rise as a promising therapeutic approach that boosts tumor-specific immune responses by inducing antigenic substances. However, the clinical application of oncolytic peptides has been hindered because of structural instability, proteolytic degradation, and undesired toxicity when administered systemically.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!