Concurrent regulation of crystallographic orientation and thickness of zirconium metal-organic framework (Zr-MOF) membranes is challenging but promising for their performance enhancement. In this study, we pioneered the fabrication of uniform triangular-shaped, 40 nm thick UiO-66 nanosheet (NS) seeds by employing an anisotropic etching strategy. Through innovating confined counter-diffusion-assisted epitaxial growth, highly (111)-oriented 165 nm-thick UiO-66 membrane was prepared. The significant reduction in thickness and diffusion barrier in the framework endowed the membrane with unprecedented CO permeance (2070 GPU) as well as high CO /N selectivity (35.4), which surpassed the performance limits of state-of-the-art polycrystalline MOF membranes. In addition, highly (111)-oriented 180 nm-thick NH -UiO-66 membrane showing superb H /CO separation performance with H permeance of 1230 GPU and H /CO selectivity of 41.3, was prepared with the above synthetic procedure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202216697 | DOI Listing |
Water Res
January 2025
State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China. Electronic address:
Urban mining of precious metals from electronic waste (e-waste) offers a dual advantage by addressing solid waste management challenges and supplying high-value metals for diverse applications. However, traditional extraction methods generally suffer from poor selectivity and limited capacity in complex acidic leachate. Herein, we present a sulfhydryl-functionalized zirconium-based metal-organic framework (Zr-MSA-AA) as a recyclable and highly selective adsorbent for efficient gold recovery.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
BCMaterials, Basque Center for Materials, UPV/EHU Science Park, Leioa 48940, Spain.
A wide range of mesoporous Zr and Hf metal-organic frameworks (MOFs), namely MIP-206, MOF-808, and NU-1000, as well as the microporous UiO-66, were systematically investigated and compared in terms of thermal and chemical stability. The holistic effects of metal type (Zr Hf), linker type (small and rigid large and flexible), and framework topology (2D 3D) on the overall framework stability were investigated.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Northwestern University, Department of Chemistry, UNITED STATES OF AMERICA.
Enriching the structural diversity of metal-organic frameworks (MOFs) is of great importance in developing functional porous materials with specific properties. New MOF structures can be accessed through the rational design of organic linkers with diverse geometric conformations, and their structural complexity can be enhanced by choosing linkers with reduced symmetry. Herein, a series of Zr-based MOFs with unprecedented topologies were developed through a linker desymmetrization and conformation engineering approach.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
Organophosphorus pesticides (OPs) pose significant environmental and health risks, and their detoxification through catalytic hydrolysis using zirconium-based metal-organic frameworks (Zr-MOFs) has attracted considerable interest due to the strong Lewis acid metal ions. Albeit important, the defects of the materials for OP hydrolysis (e.g.
View Article and Find Full Text PDFLangmuir
January 2025
College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, Hubei 430056, People's Republic of China.
Adsorption is an efficient and highly selective method for gold recovery. Introducing rich N/S organic groups to combine with metal-organic frameworks (MOFs) as adsorbents is regarded as a practical and efficient approach to enhance gold recovery. Herein, a MOF (zirconium isothiocyanatobenzenedicarboxylate MOF, UiO-66-NCS) was designed to combine with amidinothiourea (AT) to form UiO-66-AT (zirconium amidothiourea-benzenedicarboxylate MOF) for efficient and rapid adsorption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!