Legionella longbeachae Regulates the Association of Polyubiquitinated Proteins on Bacterial Phagosome with Multiple Deubiquitinases.

Microbiol Spectr

State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China.

Published: February 2023

spp. are the causative agents of a severe pneumonia known as Legionnaires' disease. Upon being engulfed by host cells, these environmental bacteria replicate intracellularly in a plasma membrane-derived niche termed -ontaining acuole (LCV) in a way that requires the efective in rganelle rafficking/ntraellular ultiplication (Dot/Icm) protein transporter. Our understanding of interactions between and its hosts was mostly based on studies of Legionella pneumophila. In this study, we found that the LCVs created by virulent Legionella longbeachae are similarly decorated by polyubiquitinated proteins to those formed by L. pneumophila and that the ubiquitin-proteasome system (UPS) is required for optimal intracellular growth of L. longbeachae. Furthermore, we utilized bioinformatics methods and the ubiquitin-vinylmethyl ester probe to obtain potential deubiquitinases (DUBs) encoded by L. longbeachae. These efforts led to the identification of 9 L. longbeachae DUBs that displayed distinct specificity toward ubiquitin chain types. Among these, LLO_1014 and LLO_2238 are associated with the LCVs and impact the accumulation of polyubiquitinated species on the bacterial phagosome. Moreover, LLO_1014 and LLO_2238 could fully restore the phenotypes associated with Δ () and Δ () mutants of L. pneumophila, indicating that these DUBs have similar functions. Together, these results reveal that L. longbeachae uses multiple DUBs to construct an intracellular niche for its replication. spp. are opportunistic intracellular bacterial pathogens that cause Legionnaires' disease. utilizes the Dot/Icm type IV secretion system to deliver effector protein into host cells to modulate various cellular functions. At least 26 L. pneumophila effectors are known to hijack the host ubiquitin system via diverse mechanisms. L. longbeachae is the second leading cause of Legionnaires' disease worldwide. However, our knowledge about the interactions between L. longbeachae and its hosts is very limited. Here, we found that, similar to L. pneumophila infection, the host ubiquitin proteasome system is also important for the intracellular replication of L. longbeachae. In addition, the bacterial phagosomes harboring L. longbeachae are enriched with polyubiquitinated proteins in a Dot/Icm system-dependent manner. We further identified 9 L. longbeachae proteins that function as DUBs with distinct ubiquitin chain specificity. Of note, several of the phagosome-associated L. longbeachae DUBs regulate the recruitment of polyubiquitinated proteins to the LCV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10100730PMC
http://dx.doi.org/10.1128/spectrum.04179-22DOI Listing

Publication Analysis

Top Keywords

polyubiquitinated proteins
16
legionnaires' disease
12
longbeachae
11
legionella longbeachae
8
bacterial phagosome
8
host cells
8
longbeachae dubs
8
ubiquitin chain
8
llo_1014 llo_2238
8
host ubiquitin
8

Similar Publications

Miy1 is a highly conserved de-ubiquitinating enzyme in yeast with MINDY1 as its human homolog. Miy1 is known to act on K48-linked polyubiquitin chain, but its biological function is unknown. Miy1 has a putative prenylation site, suggesting it as a membrane-associated protein that may contribute to the regulation of cell signaling.

View Article and Find Full Text PDF

MDM2 and MDM4 are major negative regulators of tumor suppressor p53. Beyond regulating p53, MDM2 possesses p53-independent activity in promoting cell cycle progression and tumorigenesis via its RING domain ubiquitin E3 ligase activity. MDM2 and MDM4 form heterodimer polyubiquitin E3 ligases via their RING domain interaction.

View Article and Find Full Text PDF

OTUD6B regulates KIFC1-dependent centrosome clustering and breast cancer cell survival.

EMBO Rep

January 2025

Cellular and Molecular Physiology, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 3BX, UK.

Cancer cells often display centrosome amplification, requiring the kinesin KIFC1/HSET for centrosome clustering to prevent multipolar spindles and cell death. In parallel siRNA screens of deubiquitinase enzymes, we identify OTUD6B as a positive regulator of KIFC1 expression that is required for centrosome clustering in triple-negative breast cancer (TNBC) cells. OTUD6B can localise to centrosomes and the mitotic spindle and interacts with KIFC1.

View Article and Find Full Text PDF

Ubiquitin-specific peptidase 10 promotes renal interstitial fibrosis progression through deubiquitinating and stabilizing P53 protein.

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China. Electronic address:

Renal interstitial fibrosis is the main factor determining chronic kidney disease (CKD) progression, and renal tubular epithelial cells are the key drivers of this pathological process. Herein, we revealed significantly increased ubiquitin-specific peptidase 10 (USP10) expression in the kidney tissues of both patients with CKD and mice induced by unilateral ureteral obstruction, as well as in transforming growth factor-beta 1 (TGFβ1)-induced renal tubular epithelial cells. In vivo, treatment with the USP10 small molecule inhibitor Spautin-1, which inhibits its deubiquitinating activity, weakened renal interstitial fibrosis progression and alleviated the subsequent inflammatory response and oxidative stress in male mice.

View Article and Find Full Text PDF

The primary cilium is a crucial signaling organelle that can be generated by most human cells, and impediments to primary ciliogenesis lead to a variety of developmental disorders known as ciliopathies. The removal of the capping protein, CP110, from the mother centriole is a crucial early step that promotes generation of the ciliary vesicle and ciliogenesis. Recent studies have demonstrated that CP110 undergoes polyubiquitination and degradation in the proteosome, but the mechanisms of unfolding and removal from the mother centriole remain unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!