Porcine epidemic diarrhea (PED) is a highly contagious disease, caused by porcine epidemic diarrhea virus (PEDV), which causes huge economic losses. Tight junction-associated proteins play an important role during virus infection; therefore, maintaining their integrity may be a new strategy for the prevention and treatment of PEDV. Long noncoding RNAs (lncRNAs) participate in numerous cellular functional activities, yet whether and how they regulate the intestinal barrier against viral infection remains to be elucidated. Here, we established a standard system for evaluating intestinal barrier integrity and then determined the differentially expressed lncRNAs between PEDV-infected and healthy piglets by lncRNA-seq. A total of 111 differentially expressed lncRNAs were screened, and lncRNA446 was identified due to significantly higher expression after PEDV infection. Using IPEC-J2 cells and intestinal organoids as models, we demonstrated that knockdown of lncRNA446 resulted in increased replication of PEDV, with further damage to intestinal permeability and tight junctions. Mechanistically, RNA pulldown and an RNA immunoprecipitation (RIP) assay showed that lncRNA446 directly binds to ALG-2-interacting protein X (Alix), and lncRNA446 inhibits ubiquitinated degradation of Alix mediated by TRIM25. Furthermore, Alix could bind to ZO1 and occludin and restore the expression level of the PEDV gene and TJ proteins after lncRNA446 knockdown. Additionally, Alix knockdown and overexpression affects PEDV infection in IPEC-J2 cells. Collectively, our findings indicate that lncRNA446, by inhibiting the ubiquitinated degradation of Alix after PEDV infection, is involved in tight junction regulation. This study provides new insights into the mechanisms of intestinal barrier resistance and damage repair triggered by coronavirus. Porcine epidemic diarrhea is an acute, highly contagious enteric viral disease severely affecting the pig industry, for which current vaccines are inefficient due to the high variability of PEDV. Because PEDV infection can lead to severe injury of the intestinal epithelial barrier, which is the first line of defense, a better understanding of the related mechanisms may facilitate the development of new strategies for the prevention and treatment of PED. Here, we demonstrate that the lncRNA446 directly binds one core component of the actomyosin-tight junction complex named Alix and inhibits its ubiquitinated degradation. Functionally, the lncRNA446/Alix axis can regulate the integrity of tight junctions and potentially repair intestinal barrier injury after PEDV infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10062151 | PMC |
http://dx.doi.org/10.1128/jvi.01884-22 | DOI Listing |
Viruses
December 2024
Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals (XJ-KLNDSCHA), College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China.
Porcine bocavirus (PBoV), classified within the genus Bocaparvovirus, has been reported worldwide. PBoV has been divided into group 1, group 2, and group 3. PBoV group 3 (G3) viruses are the most prevalent in China.
View Article and Find Full Text PDFMicroorganisms
November 2024
Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
In this study, the probiotic yeast was engineered to secrete the antiviral lectin griffithsin. Twelve genetic tools with the griffithsin gene were cloned into the vector pSF-TEF1-URA3 and introduced into . In the recombinant strains, a 16.
View Article and Find Full Text PDFVet Microbiol
January 2025
College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China. Electronic address:
PLoS One
January 2025
College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.
Porcine epidemic diarrhea virus (PEDV) is a significant pathogen affecting swine, causing severe economic losses worldwide. This study explores the regulatory role of miRNA-328-3p to ZO-1 expression and its impact on PEDV proliferation via the PLC-β1-PKC pathway in IPEC-J2 cells. We found that miRNA-328-3p can target ZO-1, influencing its expression and subsequently affecting the integrity of tight junctions in the cells.
View Article and Find Full Text PDFVirol Sin
December 2024
College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address:
Traditional Chinese medicine has unique advantages in preventing and treating COVID-19, and Fuzheng Jiedu decoction (FZJDD) was reported to be effective against COVID-19 in clinical trials. To investigate the potential mechanisms and material basis of FZJDD against SARS-CoV-2, we performed SARS-CoV-2 target protein inhibition analyses and a metabolite full spectrum analysis of FZJDD. Interestingly, FZJDD was found to block the binding of SARS-CoV-2 Spike protein with the receptor ACE2 and inhibit the activity of SARS-CoV-2 3CLpro.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!