Objective: Cerebral contusion models of cold-induced injury are widely used in animal studies. However, owing to the difficulty of longitudinal recording of electrical stimulation transcranial motor evoked potential (tcMEP) in brain injury models of incomplete paralysis, to the authors' knowledge there have been no multimodal evaluations of cold-induced brain injury models that have included motor function and electrophysiological and histological evaluations. Therefore, in this study the authors aimed to perform a multimodal evaluation of a rat model of brain injury.
Methods: A brain injury model in female rats and a tcMEP recording technique based on the authors' previous study were established to enable multifaceted analysis, including longitudinal electrophysiological evaluation.
Results: The model showed incomplete paralysis of the right forelimb. Motor function showed recovery over time, and histological evaluation showed tissue changes associated with cerebral contusion. In addition, stable tcMEP waveforms were recorded before and after surgery and up to 4 weeks after injury. The tcMEP amplitude decreased significantly after injury and recovered over time. Furthermore, the amplitudes at 1, 7, and 14 days after injury were significantly lower than those at preinjury (p < 0.0006, p < 0.0007, and p < 0.0067, respectively).
Conclusions: In the present study, the authors established a novel cold-induced brain injury rat model and technique that allowed for the evaluation of longitudinal tcMEP recording and demonstrated that multimodal evaluation for brain injury can be performed. This model can potentially be applied in future investigations of various therapies for brain injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3171/2022.12.JNS222039 | DOI Listing |
Chin J Integr Med
January 2025
Department of Ultrasound in Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
Objective: To evaluate the therapeutic effects of Kuanxiong Aerosol (KXA) on ischemic stroke with reperfusion and elucidate the underlying pharmacological mechanisms.
Methods: In vivo pharmacological effects on ischemic stroke with reperfusion was evaluated using the transient middle cerebral artery occlusion (t-MCAO) mice model. To evaluate short-term outcome, 30 mice were randomly divided into vehicle group (n=15) and KXA group (n=15).
Cells
January 2025
Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell'Elce di Sotto 8, 06123 Perugia, Italy.
Amniotic fluid is a complex and dynamic biological matrix that surrounds the fetus during the pregnancy. From this fluid, is possible to isolate various cell types with particular interest directed towards stem cells (AF-SCs). These cells are highly appealing due to their numerous potential applications in the field of regenerative medicine for tissues and organs as well as for treating conditions such as traumatic or ischemic injuries to the nervous system, myocardial infarction, or cancer.
View Article and Find Full Text PDFCells
December 2024
Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany.
Traumatic brain injury (TBI) remains one of the leading causes of death. Because of the individual nature of the trauma (brain, circumstances and forces), humans experience individual TBIs. This makes it difficult to generalise therapies.
View Article and Find Full Text PDFJ Alzheimers Dis
January 2025
Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, USA.
Background: Alzheimer's disease (AD) is a complex neurodegenerative disease marked by increased amyloid-β (Aβ) deposition, tau hyperphosphorylation, impaired energy metabolism, and chronic ischemia-type injury. Cerebral microvascular dysfunction likely contributes to AD pathology, but its precise pathogenic role has been poorly defined.
Objective: To examine microvascular reactivity to endothelium-dependent vasodilators and small conductance calcium-activated potassium (SK) channel activity in an intracerebral streptozotocin (STZ)-induced AD mouse model.
Ann Neurol
January 2025
Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA.
Objective: Approximately 20% of familial cases of amyotrophic lateral sclerosis (ALS) are caused by mutations in the gene encoding superoxide dismutase 1 (SOD1). Epidemiological data have identified traumatic brain injury (TBI) as an exogenous risk factor for ALS; however, the mechanisms by which TBI may worsen SOD1 ALS remain largely undefined.
Methods: We sought to determine whether repetitive TBI (rTBI) accelerates disease onset and progression in the transgenic SOD1 mouse ALS model, and whether loss of the primary regulator of axonal degeneration sterile alpha and TIR motif containing 1 (Sarm1) mitigates the histological and behavioral pathophysiology.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!