Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The high content of nitrogen in wastewater brings some operational, technical, and economical issues in conventional technologies. The aim of this study was to evaluate the nitrogen removal by hybrid hydrogels containing consortium microalgae-nitrifying bacteria in the presence of activated carbon (AC) used as an adsorbent of inhibitory substances. Hybrid hydrogels were synthesized from polyvinyl alcohol (PVA), sodium alginate (SA), biomass (microalgae-nitrifying bacteria), and AC. The hybrid hydrogels were evaluated based on the change in ammonium (NH), nitrate (NO), and chemical demand of oxygen (COD) concentrations, nitrification rate, and other parameters during 72 h. Results indicated that NH removal was more effective for hydrogels without AC than with AC, without significant differences regarding consortium biomass concentration (5 or 16%), presenting final concentrations of 3.13 and 3.75 mg NH/L for hydrogels with 5 and 16% of the biomass, respectively. Regarding NO production, hydrogels without AC reached concentrations of 25.9 and 39.77 mg NO/L for 5 and 16% of the biomass, respectively, while treatments with AC ended with 2.17 and 1.37 mg NO/L. This confirms that hydrogels can carry out the nitrification process and do not need AC to remove potential inhibitors. The best performance was observed for the hydrogel with 5% of biomass without AC with a nitrification rate of 0.43 mg N/g TSS·h.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2023.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!