Coke-oven wastewater (CW), containing an array of toxic pollutants above permissible limits even after conventional primary and secondary treatment, needs a tertiary (polishing) step to meet the statutory limit. In the present study, a suitable bacterial-microalgal consortium (Culture C) was constructed using bacterial (Culture B: Bacillus sp. NITD 19) and microalgal (Culture A: a consortium of Chlorella sp. and Synechococcus sp.) cultures at different ratios (v/v) and the potential of these cultures for tertiary treatment of CW was assessed. Culture C4 (Culture B:Culture A = 1:4) with inoculum size: 10% (v/v) was selected for the treatment of wastewater since the maximum growth (3.08 ± 0.57 g/L) and maximum chlorophyll content (4.05 ± 0.66 mg/L) were achieved for such culture in PLE-enriched BG-11 medium. During treatment of real secondary treated coke-oven effluent using Culture C4 in a closed photobioreactor, the removal of phenol (80.32 ± 2.76%), ammonium ions (47.85 ± 1.83%), fluoride (65.0 ± 4.12%), and nitrate (39.45 ± 3.42%) was observed after 24 h. In a packed bed bioreactor containing immobilized C4 culture, the maximum removal was obtained at the lowest flow rate (20 mL/h) and highest column bed height (20 cm). Artificial intelligence-based techniques were used for modeling and optimization of the process.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2023.023DOI Listing

Publication Analysis

Top Keywords

tertiary treatment
8
coke-oven wastewater
8
bacterial-microalgal consortium
8
modeling optimization
8
culture
8
treatment coke-oven
4
wastewater suspended
4
suspended immobilized
4
immobilized live
4
live cells
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!