Background: Over-release of the vasoactive peptide bradykinin (BK) due to mutation in the SERPING1 gene is the leading cause of hereditary angioedema (HAE). BK directly activates endothelial cells and increases vascular permeability by disrupting the endothelial barrier, leading to angioedema affecting face, lips, extremities, gastrointestinal tract, and larynx. Although various pharmacological treatment options for HAE became available during the last decade, they are presently limited and pose a major economic burden on patients. To identify additional therapeutic options for HAE, we evaluated the effect of CU06-1004, an endothelial dysfunction blocker, on BK-induced vascular hyperpermeability and the HAE murine model.

Methods: To investigate the effect of CU06-1004 on BK-induced vascular hyperpermeability in vivo, we pre-administrated WT mice with the drug and then induced vascular leakage through intravenous injection of BK and observed vascular alternation. Then, SERPING1 deficient mice were used for a HAE murine model. For an in vitro model, the HUVEC monolayer was pre-treated with CU06-1004 and then stimulated with BK.

Results: Bradykinin disrupted the endothelial barrier and formed interendothelial cell gaps, leading to hyperpermeability in vivo and in vitro. However, CU06-1004 treatment protected the endothelial barrier by suppressing Src and myosin light chain activation via BK and alleviated hyperpermeability.

Conclusion: Our study shows that CU06-1004 oral administration significantly reduced vascular hyperpermeability in the HAE murine model by protecting the endothelial barrier function against BK stimulation. Therefore, protecting endothelium against BK with CU06-1004 could serve as a potential prophylactic/therapeutic approach for HAE patients.

Download full-text PDF

Source
http://dx.doi.org/10.1111/all.15674DOI Listing

Publication Analysis

Top Keywords

vascular hyperpermeability
16
endothelial barrier
16
murine model
12
hae murine
12
hereditary angioedema
8
protecting endothelium
8
options hae
8
bk-induced vascular
8
hyperpermeability hae
8
hyperpermeability vivo
8

Similar Publications

[The potential of BCL6B as a therapeutic target for chorioretinal vascular lesions].

Nihon Yakurigaku Zasshi

January 2025

Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University.

The ocular tissue is one of the most densely populated tissues in the body with extremely small blood vessels, and vascular lesions have been reported to be a factor in vision loss and visual field defects in many ocular diseases. Currently, vascular endothelial growth factor (VEGF)-targeted agents are the first line of treatment for intraocular vascular lesions, however, there are some cases in which they are not fully effective. Therefore, we explored pathogenic molecules other than VEGF, aiming to develop new molecular-targeted therapy.

View Article and Find Full Text PDF

Background: Excessive inflammation in sepsis causes microvascular dysfunction associated with organ dysfunction and high mortality. The present studies aimed to examine the therapeutic potential of linagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor in a clinically relevant polymicrobial sepsis model in mice.

Methods: Sepsis was induced by cecal ligation and puncture (CLP).

View Article and Find Full Text PDF

Vascular Basement Membrane Fragmentation in Keloids and the Expression of Key Basement Membrane Component Genes.

Plast Reconstr Surg Glob Open

December 2024

From the Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School Hospital, Tokyo, Japan.

Background: Keloids are growing scars that arise from injury to the reticular dermis and subsequent chronic local inflammation. The latter may be promoted by vascular hyperpermeability, which permits the ingress of chronic inflammatory cells/factors. Cutaneous capillaries consist of endothelial cells that generate, and are anchored by, a vascular basement membrane (VBM).

View Article and Find Full Text PDF

Background: Bortezomib (BTZ), a selective 26 S proteasome inhibitor, is clinically useful in treating multiple myeloma and mantle cell lymphoma. BTZ exerts its antitumor effect by suppressing nuclear factor-B in myeloma cells, promoting endothelial cell apoptosis, and inhibiting angiogenesis. Despite its success, pulmonary complications, such as capillary leak syndrome of the vascular hyperpermeability type, were reported prior to its approval.

View Article and Find Full Text PDF

Repeated low-intensity noise exposure exacerbates age-related hearing loss via RAGE signaling pathway.

Neurobiol Dis

January 2025

Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, State Key Laboratory of Hearing and Balance Science, National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing 100048, China. Electronic address:

Repeated low-intensity noise exposure is prevalent in industrialized societies. It has long been considered risk-free until recent evidence suggests that the temporary threshold shift (TTS) induced by such exposure might be a high-risk factor for hearing loss. This study was conducted to further investigate the manner in which repeated low-intensity noise exposure contributed to hearing damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!