A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identifying spatiotemporal information of the point pollutant source indoors based on the adjoint-regularization method. | LitMetric

Fast and accurate identification of the pollutant source location and release rate is important for improving indoor air quality. From the perspective of public health, identification of the airborne pathogen source in public buildings is particularly important for ensuring people's safety and health. The existing adjoint probability method has difficulty in distinguishing the temporal source, and the optimization algorithm can only analyze a few potential sources in space. This study proposed an algorithm combining the adjoint-pulse and regularization methods to identify the spatiotemporal information of the point pollutant source in an entire room space. We first obtained a series of source-receptor response matrices using the adjoint-pulse method in the room based on the validated CFD model, and then used the regularization method and composite Bayesian inference to identify the release rate and location of the dynamic pollutant source. The results showed that the MAPEs (mean absolute percentage errors) of estimated source intensities were almost less than 15%, and the source localization success rates were above 25/30 in this study. This method has the potential to be used to identify the airborne pathogen source in public buildings combined with sensors for disease-specific biomarkers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9912206PMC
http://dx.doi.org/10.1007/s12273-022-0975-zDOI Listing

Publication Analysis

Top Keywords

pollutant source
16
source
9
spatiotemporal point
8
point pollutant
8
release rate
8
airborne pathogen
8
pathogen source
8
source public
8
public buildings
8
method
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!