Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In recent years, metagenome-assembled genomes (MAGs) have provided glimpses into the intra- and interspecies genetic diversity and interactions that form the bases of complex microbial communities. High-throughput reconstruction of genome-scale metabolic networks (GEMs) from MAGs is a promising avenue to disentangle the myriad trophic interactions stabilizing these communities. However, high-throughput reconstruction of GEMs relies on accurate gap filling of metabolic pathways using automated algorithms. Here, we systematically explore how the composition of the media (specification of the available nutrients and metabolites) during gap filling influences the resulting GEMs concerning predicted auxotrophies for fully sequenced model organisms and environmental isolates. We expand this analysis by using 106 MAGs from the same species with differing quality. We find that although the completeness of MAGs influences the fraction of gap-filled reactions, the composition of the media plays the dominant role in the accurate prediction of auxotrophies that form the basis of myriad community interactions. We propose that constraining the media composition for gap filling through both experimental approaches and computational approaches will increase the reliability of high-throughput reconstruction of genome-scale metabolic models from MAGs and paves the way for culture independent prediction of trophic interactions in complex microbial communities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9912011 | PMC |
http://dx.doi.org/10.1098/rsfs.2022.0070 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!