Ursolic acid (UA) mediates the vasorelaxant activity via nitric oxide (NO) release, and upregulation of endothelial nitric oxide synthase (eNOS) in endothelial cells (ECs) in disease conditions with increased oxidative stress (OS). The present study aimed to reflect on the impact of 8 weeks of a combination of UA supplementation and resistance/endurance training in old male Wistar rats having a high-fat diet and/or low-dose streptozotocin-induced type 2 diabetes (HFD/STZ-induced T2D), with an emphasis on Sirtuin 1 (SIRT1)-endothelial nitric oxide synthase (eNOS) axis and OS indices in their aortic tissues. A total number of56 21-month-old male Wistar rats with HFD/STZ-induced T2D were randomized into seven groups (n = eight animals per group): (1) sedentary old nondiabetic (Control [C]); (2) sedentary HFD/STZ-induced T2D (Diabetic [D]); (3) sedentary HFD/STZ-induced T2D plus UA (Diabetic + Ursolic Acid [DU]); (4) endurance-trained HFD/STZ-induced T2D (Diabetic + Endurance Training [DE]); (5) resistance-trained HFD/STZ-induced T2D (Diabetic + Resistance Training [DR]); (6) endurance-trained HFD/STZ-induced T2D plus UA (Diabetic + Endurance Training + Ursolic Acid [DEU]); and (7) resistance-trained STZ-diabetic plus UA (Diabetic + Resistance Training + Ursolic Acid [DRU]) rats. The ladder-based resistance training group performed the ladder resistance training at 60% of the maximum voluntary carrying capacity (MVCC), 14-20 climbs in each session, with a one-min rest between each two trials, 5 days a week. The treadmill-based endurance exercise training protocol consisted of repeated bouts of high- and low-intensity training with 60-75% maximal running speed and 30%-40% maximal running speed in the course of 8 weeks, respectively. The animals in the supplement groups also took 500 mg of UA/kg of high-fat diet/day, resulting in a daily UA intake of approximately 250 mg UA per kg of body weight rat/day. The resistance/endurance training plus the UA consumption could partially reverse the levels of malondialdehyde (MDA), nitric oxide (NO), as well as total antioxidant capacity (TAC). It was concluded that oral 0.5% UA supplementation can prevent vascular aging biomarkers in a HFD/STZ-induced T2D model. Further studies are also required to clarify how chronic consumption of UA with/without training protocols reverses vascular aging process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9922143 | PMC |
http://dx.doi.org/10.1002/fsn3.3105 | DOI Listing |
Adv Sci (Weinh)
December 2024
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China.
Recent studies have highlighted the role of the gut microbiota in type 2 diabetes (T2D). Improving gut microbiota dysbiosis can be a potential strategy for the prevention and management of T2D. Here, this work finds that the abundance of Barnesiella intestinihominis is significantly decreased in the fecal of T2D patients from 2-independent centers.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2024
Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi-110062, India.
Objectives: Nephropathy is the most common comorbidity linked to T2D. The present study aimed to examine the potential of saroglitazar in the context of a high-fat diet and low-dose streptozotocin-induced diabetic nephropathy in Wistar rats.
Materials And Methods: Molecular docking simulation investigations were conducted on the ligand-binding region of type IV collagen and Kidney injury molecule-1 (KIM-1), using saroglitazar and fenofibrate as the subjects.
J Nutr Biochem
January 2025
Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey.
Extra virgin olive oil (EVOO) has a putative antidiabetic activity mostly attributed to its polyphenol Hydroxytyrosol. In this study, we explored the antidiabetic effects of EVOO and Hydroxytyrosol on an in vivo T2D-simulated rat model as well as in in silico study. Wistar rats were divided into four groups.
View Article and Find Full Text PDFBMJ Open Diabetes Res Care
May 2024
Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
Introduction: There has been increasing evidence that the gut microbiota is closely related to type 2 diabetes (T2D). Metformin (Met) is often used in combination with saxagliptin (Sax) and repaglinide (Rep) for the treatment of T2D. However, little is known about the effects of these combination agents on gut microbiota in T2D.
View Article and Find Full Text PDFInt J Mol Sci
April 2024
Instituto de Investigación en Enfermedades Crónico-Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (C.U.C.S.), Universidad de Guadalajara, Guadalajara, Sierra Mojada 950, Puerta peatonal 7, Col. Independencia, Guadalajara C.P. 44350, Mexico.
Experimental animal models of diabetes can be useful for identifying novel targets related to disease, for understanding its physiopathology, and for evaluating emerging antidiabetic treatments. This study aimed to characterize two rat diabetes models: HFD + STZ, a high-fat diet (60% fat) combined with streptozotocin administration (STZ, 35 mg/kg BW), and a model with a single STZ dose (65 mg/kg BW) in comparison with healthy rats. HFD + STZ- induced animals demonstrated a stable hyperglycemia range (350-450 mg/dL), whereas in the STZ-induced rats, we found glucose concentration values with a greater dispersion, ranging from 270 to 510 mg/dL.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!