The development of environment-friendly, step economic couplings to generate structurally diverse macrocyclic compounds is highly desirable but poses a marked challenge. Inspired by the C-H oxidation mechanism of cytochromes P450, an unprecedented and practical Rh -catalyzed acylmethylation macrocyclization via C-H/O dual activation has been developed by us. The process of macrocyclization is facilitated by a synergic coordination from pyridine and ester group. Interestingly, the reaction mode derives from a three-component coupling which differs from established olefination and alkylation paths. Density functional theory (DFT) calculations and control experiments revealed the mechanism of this unique C-H/O dual activation. The newly achieved acylmethylation macrocyclic products and their derivatives showed a potent anti-H1N1 bioactivity, which may provide an opportunity for the discovery of novel anti-H1N1 macrocyclic leading compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202218886DOI Listing

Publication Analysis

Top Keywords

c-h/o dual
12
dual activation
12
rhodiumiii-catalyzed c-h/o
4
activation macrocyclization
4
macrocyclization synthesis
4
synthesis evaluation
4
evaluation pyrido[21-a]isoindole
4
pyrido[21-a]isoindole grafted
4
macrocyclic
4
grafted macrocyclic
4

Similar Publications

Covalent organic frameworks (COFs) are a class of porous crystalline materials based on organic building blocks containing light elements, such as C, H, O, N, and B, interconnected by covalent bonds. Because of their regular crystal structure, high porosity, stable mechanical structure, satisfactory specific surface area, easy functionalization, and high tunability, they have important applications in several fields. Currently, most of the established methods based on COFs can only be used for individual detection or adsorption of the target.

View Article and Find Full Text PDF

Developing metal-organic framework (MOF) adsorbents with excellent performance and robust stability is of critical importance to reduce CO emissions yet challenging. Herein, a robust ultra-microporous MOF, Cu(bpfb)(bdc), with mixed ligands of N, N'-(1,4-phenylene)diisonicotinamide (bpfb), and 1,4-dicarboxybenzene (bdc) was delicately constructed. Structurally, this material possesses double-interpenetrated frameworks formed by two staggered, independent frameworks, resulting in two types of narrow ultra-micropores of 3.

View Article and Find Full Text PDF

The development of environment-friendly, step economic couplings to generate structurally diverse macrocyclic compounds is highly desirable but poses a marked challenge. Inspired by the C-H oxidation mechanism of cytochromes P450, an unprecedented and practical Rh -catalyzed acylmethylation macrocyclization via C-H/O dual activation has been developed by us. The process of macrocyclization is facilitated by a synergic coordination from pyridine and ester group.

View Article and Find Full Text PDF

A new series of spirooxindoles based on ethylene derivatives having furan aryl moiety are reported. The new hybrids were achieved via [3 + 2] cycloaddition reaction as an economic one-step efficient approach. The final constructed spirooxindoles have four contiguous asymmetric carbon centers.

View Article and Find Full Text PDF

In this study, a novel pyridone-based phthalimide fleximer, that is, ethyl 5-cyano-6-(3-(1,3-dioxoisoindolin-2-yl)propoxy)-4-(3-methoxyphenyl)-2-methylnicotinate, was synthesized, and its structure was established by the single-crystal X-ray diffraction method. The supramolecular self-assembly of the titled compound through noncovalent interactions was then investigated thoroughly. The titled compound crystallized with two symmetry-independent molecules ( and , ' = 2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!