Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Renal ischemia-reperfusion injury (IRI) is mainly responsible for acute kidney injury for which there is no effective therapy. Accumulating evidence has indicated the important role of mitophagy in mitochondrial homeostasis under stress. OGG1 (8-oxoguanine DNA glycosylase) is known for functions in excision repair of nuclear and mitochondrial DNA. However, the role of OGG1 in renal IRI remains unclear. Herein, we identified OGG1, induced during IRI, as a key factor mediating hypoxia-reoxygenation-induced apoptosis in vitro and renal tissue damage in a renal IRI model. We demonstrated that OGG1 expression during IRI negatively regulates mitophagy by suppressing the PINK1/Parkin pathway, thereby aggravating renal ischemic injury. OGG1 knockout and pharmacological inhibition attenuated renal IRI, in part by activating mitophagy. Our results elucidated the damaging role of OGG1 activation in renal IRI, which is associated with the regulatory role of the PINK1/Parkin pathway in mitophagy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10392062 | PMC |
http://dx.doi.org/10.1111/cpr.13418 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!