A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A fair experimental comparison of neural network architectures for latent representations of multi-omics for drug response prediction. | LitMetric

AI Article Synopsis

  • Recent advances in neural network architectures for multi-omics data integration highlight the importance of how and when different data representations are combined, but there’s limited knowledge on their comparative performance under controlled conditions.
  • A new comparison framework was developed to evaluate integration methods, including early integration and four deep learning systems, alongside a new approach called Omics Stacking, which merges intermediate and late integration benefits.
  • Results showed that early integration performed poorly, while methods using triplet loss had the best predictive accuracy; Super.FELT excelled in cross-validation, whereas Omics Stacking was more effective in external testing.

Article Abstract

Background: Recent years have seen a surge of novel neural network architectures for the integration of multi-omics data for prediction. Most of the architectures include either encoders alone or encoders and decoders, i.e., autoencoders of various sorts, to transform multi-omics data into latent representations. One important parameter is the depth of integration: the point at which the latent representations are computed or merged, which can be either early, intermediate, or late. The literature on integration methods is growing steadily, however, close to nothing is known about the relative performance of these methods under fair experimental conditions and under consideration of different use cases.

Results: We developed a comparison framework that trains and optimizes multi-omics integration methods under equal conditions. We incorporated early integration, PCA and four recently published deep learning methods: MOLI, Super.FELT, OmiEmbed, and MOMA. Further, we devised a novel method, Omics Stacking, that combines the advantages of intermediate and late integration. Experiments were conducted on a public drug response data set with multiple omics data (somatic point mutations, somatic copy number profiles and gene expression profiles) that was obtained from cell lines, patient-derived xenografts, and patient samples. Our experiments confirmed that early integration has the lowest predictive performance. Overall, architectures that integrate triplet loss achieved the best results. Statistical differences can, overall, rarely be observed, however, in terms of the average ranks of methods, Super.FELT is consistently performing best in a cross-validation setting and Omics Stacking best in an external test set setting.

Conclusions: We recommend researchers to follow fair comparison protocols, as suggested in the paper. When faced with a new data set, Super.FELT is a good option in the cross-validation setting as well as Omics Stacking in the external test set setting. Statistical significances are hardly observable, despite trends in the algorithms' rankings. Future work on refined methods for transfer learning tailored for this domain may improve the situation for external test sets. The source code of all experiments is available under https://github.com/kramerlab/Multi-Omics_analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9926634PMC
http://dx.doi.org/10.1186/s12859-023-05166-7DOI Listing

Publication Analysis

Top Keywords

latent representations
12
omics stacking
12
external test
12
fair experimental
8
neural network
8
network architectures
8
drug response
8
multi-omics data
8
intermediate late
8
integration methods
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: